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1 Introduction

Hailed as “one of the most powerful innovations in finance in 500 years” (Casey and Vigna,
2015), the cryptocurrency cash market has grown to a market capitalization of more than
$2 trillion with more than 5,000 cryptocurrencies (CoinMarketCap, 2021). In parallel,
there has been a proliferation of cryptocurrency derivatives and trading platforms. Trading
volume in cryptocurrency derivatives, including futures, options, and swaps, surpassed $12
trillion in 2020 (CryptoCompare, 2021; TokenInsight, 2021). Despite the rapid expansion
of cryptocurrency derivatives, we do not know whether their introduction is beneficial or
detrimental to cryptocurrency cash markets. We take a first step to fill this gap.

The nature of the impact of the introduction of derivatives on their corresponding cash
markets has been the subject of controversial debates and mixed empirical evidence.1 In
complete markets without frictions, derivatives are redundant, and their introduction should
be irrelevant for spot assets. However, in the presence of frictions, the impact of derivatives
on cash markets depends primarily on whether both assets are complements or substitutes.

We exploit the introduction of bitcoin futures by Cboe Global Markets, Inc. (CBOE) and
the Chicago Mercantile Exchange (CME) Group in December 2017 to revisit the mixed
evidence on the impact of derivatives on cash markets. That event is unique because of the
particular bitcoin trading infrastructure and the selective introduction of bitcoin futures.

First, bitcoins trade on multiple exchanges and are fully fungible across trading venues.
Across markets, bitcoins also trade at different prices with different degrees of liquidity,
giving rise to inefficiencies and arbitrage opportunities (Makarov and Schoar, 2019, 2020).
Thus, cryptocurrencies provide a near perfect setting to study the pricing of an identical
asset traded on multiple exchanges in the spirit of Hasbrouck (1995). While price discrep-
ancies of similar assets have been studied in other contexts, assets are typically not fully
fungible, even in closely related securities such as ADRs (Gagnon and Karolyi, 2010).

Second, the CBOE and CME selectively introduced futures contracts on bitcoin-USD (BTC–
USD) exchange rates, but not on any other bitcoin-fiat currency pairs (e.g., BTC–EUR).
Third, the contract launch was largely unanticipated, as we describe in more detail below.

These features enable us to isolate the impact of the futures introduction on BTC–USD
relative to other cryptocurrency exchange rates. In particular, we can exploit differential
variation of the corresponding cryptocurrency attributes around the futures introduction
within exchanges and account for their unobserved time-varying characteristics. We consider
various market attributes related to cryptocurrency pricing efficiency and market quality.

Specifically, we first quantify four sets of characteristics of cryptocurrency exchange rates.
We consider measures of price synchronicity such as pairwise cross-exchange price corre-
lations and price integration following Kapadia and Pu (2012), market quality following

1We review the evidence in detail in the literature section.
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Hasbrouck (1993), price efficiency following Hou and Moskowitz (2005), and several liquid-
ity measures, including the Amihud (2002) price impact measure, the Roll (1984) illiquidity
measure, the Abdi and Ranaldo (2017) bid-ask spread measure, and trading volume. In the
appendix, we further consider measures of volatility and arbitrage opportunities based on
price levels as in Makarov and Schoar (2020).

We next estimate whether the introduction of the BTC–USD futures contract in December
2017 improved the characteristics of BTC–USD exchange rates more than those of other
bitcoin-fiat currency pairs, which we broadly refer to as BTC–CCY. Thus, we exploit both
the unique features of cryptocurrency markets and the selective introduction of bitcoin
futures on BTC–USD to capture the treatment effect through cross-sectional differences in
the evolution of market attributes between BTC–USD and BTC–CCY.

Whether the listing of derivatives products linked to cryptocurrency assets affects the under-
lying’s market attributes is relevant for current regulatory debates. For example, proposals
for bitcoin (BTC) exchange-traded funds (ETFs) have consistently been denied approval
by the SEC, due to concerns of manipulation in related spot markets.

The debate is further emphasized by opposing views expressed amid policymakers and in-
dustry participants. Former chairman of the U.S. Commodity Futures Trading Commission
(CFTC), Christopher Giancarlo, argues that regulators allowed the launch of bitcoin futures
contracts in December 2017 because it was widely believed that it would pop the bitcoin
bubble and make prices better reflect fundamental values. Similarly, the company Bitwise
Index Services proposes that, among other things, “the launch of futures . . . dramatically
improved the efficiency of the bitcoin market in 2018.”

Other commentators suggest that “bitcoin’s price dictates BTC derivatives market and not
vice-versa” (Biraajmaan, 2019). Against the backdrop of these debates, we provide formal
evidence on how the bitcoin futures introduction impacted the quality, efficiency, liquidity,
and price informativeness of the bitcoin cash market.

For our analysis, we combine data from Kaiko and CryptoCompare, which provide cryp-
tocurrency price and trade information for bitcoin exchange rates against the USD (BTC–
USD) and a set of other fiat currencies (BTC–CCY). Trades are timestamped to the mil-
lisecond and executed on numerous trading platforms. Given our identification strategy of
comparing the evolution of market characteristics for BTC–USD relative to other bitcoin
exchange rate pairs around BTC–USD futures listing, we collect bitcoin-fiat exchange rate
pairs on exchanges that are operational between July 1, 2016 and December 31, 2018.

Our working sample contains 10 bitcoin-fiat currency exchange rates traded on 22 different
exchanges. In all tests, we compare the treated BTC–USD to the control group that includes
BTC–EUR, BTC–GBP, BTC–HKD, BTC–SGD, BTC–JPY, BTC–AUD, BTC–IDR, BTC–
CAD, and BTC–RUB. The 22 exchanges in our sample include Bitfinex, bitFlyer, Bitstamp,
Bittrex, BTCbox, BTCC, BTC–e, Cex.io, Coinbase, Exmo, Gatecoin, Gemini, HitBTC, it-
Bit, Kraken, LakeBTC, Liquid, OKCoin, Poloniex, QuadrigaCX, Quoine, and Zaif. In light
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of claims that cryptocurrency volumes are being manipulated (Gandal, Hamrick, Moore,
and Oberman, 2018; Griffin and Shams, 2020; Aloosh and Li, 2020; Cong, Li, Tang, and
Yang, 2021; Amiram, Lyandres, and Rabetti, 2021), we also focus on the subset of nine
exchanges that are allegedly insulated from such manipulations, according to Bitwise Asset
Management’s exchange traded fund proposal filed with the SEC.

We compute daily log returns and trading volume by aggregating the daily quantity of
traded bitcoins. These raw data are used to compute the metrics of price synchronicity,
price efficiency, market quality, and liquidity, which we estimate at a monthly frequency.

We run difference-in-differences tests to examine how the imputed characteristics of BTC–
USD exchange rates vary around the introduction of BTC–USD futures relative to those of
other bitcoin-fiat exchange rates, i.e., BTC–CCY. Our main tests are based on regressions
with exchange fixed effects, allowing us to exploit the within exchange variation of BTC–
USD relative to other exchange rate pairs following futures listings. We also include currency
fixed effects to account for time-invariant cross-sectional differences at the exchange rate
level, and we include monthly time fixed effects to absorb common cross-exchange variation
that could be associated with a maturing and growing market. In our most conservative
specifications, we include currency fixed effects together with interactions of exchange and
time fixed effects to absorb unobserved time-varying characteristics at the exchange level.

Overall, we find strong evidence in favor of an increase in cross-exchange price synchronicity
and integration. Following the futures introduction, the Pearson correlation coefficient be-
tween cross-exchange returns increases on average by about 5 to 12 percentage points more
for BTC–USD compared to other bitcoin-fiat exchange rates. This is economically meaning-
ful as the average in-sample correlation coefficients of the treatment and control currencies
are 0.87 and 0.85, respectively. Similarly, we find that the differential increase in price
concordance ranges between 5 and 14 percentage points, depending on the specification,
implying a significant reduction in arbitrage opportunities.

We also find supporting evidence that BTC–USD exchange rates become significantly more
efficient than other exchange rate pairs regarding the speed at which information gets incor-
porated into prices. Furthermore, the market quality of BTC–USD exchange rates increases.
In the appendix, we provide further evidence for a reduction in volatility and arbitrage op-
portunities as measured by an arbitrage index using price levels.

Finally, our evidence supports the view that there is a stronger increase in liquidity for
BTC–USD following the futures introduction. We derive our baseline evidence using an
aggregate liquidity factor following Dick-Nielsen, Feldhutter, and Lando (2012) and Schw-
ert (2017). Results for individual liquidity metrics are noisier if measured for exchanges
suspect of market manipulation. Excluding the allegedly fraudulent exchanges, we estimate
a significantly greater reduction in price impact for BTC–USD exchange rate returns using
the Amihud price impact measure, and a comparatively greater increase in trading volume.

As a refinement of our tests, we exploit the settlement mechanisms of bitcoin futures. Con-
tracts on both the CME and the CBOE are settled in cash, but the reference cash price
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differs between the two exchanges. Specifically, the CME relies on the bitcoin reference
rate, which is determined at 4:00 p.m. London time using price inputs from four exchanges
(itBit, Kraken, BitStamp, and GDAX/Coinbase) sampled between 3:00 p.m. and 4:00 p.m.
The CBOE relies on BTC–USD prices from the Gemini exchange determined at 4:00 p.m.
Eastern time. We repeat our tests using daily returns computed from hourly prices sampled
at 4:00 p.m. in the corresponding time zones and from the corresponding exchanges. Con-
sistent with our expectation, our results are overall economically and statistically stronger
if we rely on prices that are directly connected to the settlement of the futures contracts.

Furthermore, we examine channels that may explain the positive impact from the futures
introduction on bitcoin cash. Asynchronous price movements and arbitrage opportunities
may be due to a lack of arbitrage capital and liquidity frictions or to limited investor
attention. We measure these attributes using variables that are likely to be correlated with
liquidity frictions and investor attention. We rely on our liquidity metrics from previous
tests and measure investor attention using the Google search intensity for cryptocurrency
exchanges. We find significantly different results in terms of liquidity, price efficiency, and
market quality for exchanges ranked as being above or below the median level of frictions,
but not for attention, supporting a limits-to-arbitrage channel (Shleifer and Vishny, 1997).

Finally, we verify the role of triangular arbitrage in explaining cross-currency differences in
market characteristics. Makarov and Schoar (2020) explain that “customers from different
countries can usually only trade cryptocurrencies on their local exchange and in their local
currency.” Thus, triangular arbitrage is challenging if it involves one leg with a pure fiat
exchange rate (e.g., USD–EUR), which is not listed on cryptocurrency exchanges.

In contrast, arbitrage is easier if it does not involve a fiat exchange rate pair (e.g., Dyhrberg,
2020). Consistent with that view, we find that the futures introduction is associated with
a greater increase in price synchronicity for BTC–USD relative to ether-USD (ETH–USD)
across exchanges, but not within exchanges. Notably, all exchanges that list BTC–USD
and ETH–USD also reference BTC–ETH.

Relatedly, we find no significant effect for ETH–USD relative to ETH–CCY around the
introduction of bitcoin futures in 2017, suggesting that we capture a bitcoin effect rather
than a USD effect. On the other hand, we document (in the appendix) a significant ef-
fect of ETH–USD relative to ETH–CCY around the introduction of ethereum futures in
2021, further supporting the view that the derivatives introduction helps align prices in the
underlying cash market.

The remainder of this paper is organized as follows. We discuss the literature in Section
2 and describe the institutional details of blockchains and cryptocurrencies in Section 3.
We develop our hypotheses in Section 4. In Section 5, we describe the data, present sum-
mary statistics, and discuss the main results. In Section 6, we discuss potential channels,
refinements, and robustness. We conclude in Section 7.
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2 Related Literature

We exploit the unique design of the cryptocurrency market to provide new evidence on
the mixed findings regarding the impact of derivatives on cash markets. Thus, we relate
primarily to the emerging literature on cryptocurrencies and blockchains (Section 2.1), and
to research on the impact of derivatives on cash markets (Section 2.2).2

2.1 Cryptocurrencies and blockchain

Bitcoin was officially introduced in 2009 as a peer-to-peer digital currency, following the pub-
lication of a white paper by pseudonymous Satoshi Nakamato in 2008 (Nakamoto, 2008).
Böhme, Christin, Edelman, and Moore (2015) provide a review of bitcoin and its potential
blockchain-based applications. Yermack (2015) evaluates bitcoin’s status as a real currency,
Harvey (2016) reviews applications in cryptofinance, and Howden (2015) discusses the reg-
ulatory aspects of cryptocurrencies.

As a decentralized payment system built on aggregate consensus and free of intervention
by central authorities, bitcoin was initially idealized as immutable and secure. Yet, Griffin
and Shams (2020) suggest that bitcoin (and other cryptocurrency) prices are subject to
market manipulation. That could come in the form of pump-and-dump schemes (Li, Shin,
and Wang, 2018) or wash trades (Cong, Li, Tang, and Yang, 2021; Aloosh and Li, 2020;
Amiram, Lyandres, and Rabetti, 2021). Similarly, Gandal, Hamrick, Moore, and Oberman
(2018) associate bitcoin volatility increases with suspicious trading activity. Anecdotally,
multiple cryptocurrency exchanges have been hacked. Foley, Karlsen, and Putnins (2019)
quantify that bitcoin facilitates about $76 billion in yearly illegal activity.

Our work is most closely related to studies on frictions and inefficiencies in bitcoin and other
cryptocurrencies. Easley, O’Hara, and Basu (2019) examine the endogenous emergence
of transaction costs on the blockchain, while we are concerned with bitcoin trading on
cryptocurrency exchanges. Makarov and Schoar (2020) pinpoint significant cross-exchange
arbitrage opportunities, which are larger across than within countries, and suggest that
arbitrageurs counterbalance the price impact of noise traders (see also Krückeberg and
Scholz (2020); Dyhrberg (2020)). Kroeger and Sarkar (2017) relate cross-exchange price
differences to liquidity frictions (e.g., bid-ask spread, order book depth, volatility), Hautsch,
Scheuch, and Voigt (2019) to stochastic settlement latency, and Borri and Shaknov (2021)
to risk premiums. Yu and Zhang (2018) associate restrictions to cross-border capital flows
with price discrepancies between spot exchange rates and their cryptocurrency implied
synthetic counterparts (see also Choi, Lehar, and Stauffer (2018) for related work on the
“Kimchi premium”). In contrast to these studies, we provide the first evidence on how

2By studying price discrepancies of fully fungible assets across exchanges, we relate more broadly to the
literature on limits to arbitrage (Shleifer and Vishny, 1997; Gromb and Vayanos, 2010).
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the introduction of the BTC–USD futures contract in December 2017 impacts the cross-
exchange market quality, efficiency, and price synchronicity in the bitcoin cash market.

A growing literature provides descriptive evidence on the interaction between bitcoin cash
and futures markets (Hale, Krishnamurthy, Kudlyak, and Shultz, 2018; Corbet, Lucey, Peat,
and Vigne, 2018; Köchling, Müller, and Posch, 2019; Nan and Kaizoji, 2019; Kim, Lee, and
Kang, 2020), focusing primarily on the relative price discovery process (Kapar and Olmo,
2019; Baur and Dimpfl, 2019; Karkkainen, 2019; Akyildirim, Corbet, Katsiampa, Kellard,
and Sensoy, 2021; Alexander and Heck, 2020). Shi and Shi (2019) study how South Korea’s
ban on bitcoin futures impacts intraday spot volatility.

More tangentially, we relate to the literature that is focused on understanding the economics
of blockchain technology (we describe the institutional aspects of the blockchain technology
and cryptocurrencies in Appendix A). For example, Biais, Bisiére, Bouvard, and Casamatta
(2019) study consensus for the Proof-of-Work (PoW) blockchain protocol and find that per-
sistent disagreement may arise in equilibrium. Hinzen, John, and Saleh (2019) highlight
that PoW’s consensus structure may explain limited cryptocurrency adoption. Chiu and
Koeppl (2019) examine the implications of the PoW blockchain technology for asset trading
and settlement. Cong, He, and Li (2021) argue that PoW leads to excessive energy expen-
diture and an endogenous formation of mining pools, while Alsabah and Capponi (2020)
show how PoW may lead to mining centralization.

Focusing on the Proof-of-Stake (PoS) blockchain protocol, Saleh (2021) studies conditions
for consensus and Rosu and Saleh (2021) consider the evolution of wealth dynamics. More
generally, Cong and He (2019) show how the blockchain technology can lead to greater com-
petition and consumer surplus, as well as to welfare-destroying collusion. See also Gandal
and Halaburda (2014) for an examination of competition in cryptocurrency markets. Addi-
tional work by Malinova and Park (2017) suggests that the blockchain may enhance welfare
through increased transparency. Zimmerman (2019) demonstrates that the blockchain tech-
nology can lead to excessive price volatility and speculative activity.

Finally, Biais, Bisiere, Bouvard, Casamatta, and Menkveld (2018) and Pagnotta and Buraschi
(2018) study the equilibrium pricing of bitcoin. Yermack (2017) discusses implications of
blockchains for corporate governance. For further discussions, see also Dwyer (2015) and
Gans and Halaburda (2015).

2.2 Introduction of derivatives and impact on cash markets

Our work also relates to the vast literature that studies how the introduction of deriva-
tives affects market attributes of the underlying cash markets. Hodges (1992), Damodaran
and Subrahmanyam (1992) and Mayhew (1999) provide early reviews that highlight the
conflicting theoretical predictions. These often depend on the incentives of informed and
uninformed investors to trade in either market venue. For example, Subrahmanyam (1991)
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predicts that stock bid-ask spreads should increase following the introduction of equity fu-
tures contracts, because of greater adverse selection costs. This is explained by a greater
fraction of informed investors because of uninformed investors migrating towards the futures
market. Alternatively, because futures represent a low-cost hedging instrument for special-
ists, bid-ask spreads could reduce in response to futures introduction, due to an increase
in hedging activity (Silber, 1985). See also Gammill Jr and Perold (1989) and Gorton and
Pennacchi (1991) for related work.

The evidence found in empirical studies is likewise mixed. For example, Jegadeesh and
Subrahmanyam (1993) find that stocks’ bid-ask spreads increase in response to S&P500
futures introduction. In contrast, Bessembinder and Seguin (1992) report that futures
markets enhance the liquidity and depth of equity markets. Choi and Subrahamanyam
(1994) argue that the reduction in bid-ask spreads is small, despite increases in volume
that are possibly associated with increased price informativeness. Mayhew (1999) studies
results from the introduction of futures on spot volatility for commodity, fixed income, and
stock index futures, respectively. The large list of studies (e.g., Figlewski, 1981; Stoll and
Whaley, 1990; Edwards, 1988a,b; Chan, Chan, and Karolyi, 1991; Brenner, Subrahmanyam,
and Uno, 1994; Harris, 1989; Gulen and Mayhew, 2000; Gagnon, 2018) presents by and large
results that are inconclusive with respect to the impact on spot volatility.

Another set of studies has examined the impact of option listing on the volatility and
the beta of the spot market (Mayhew, 1999), trading volume, bid-ask spreads, and price
informativeness. Initial tests are indicative of a reduction in spot volatility (e.g., Skinner,
1989; Conrad, 1989; Detemple and Jorion, 1990; Damodaran and Lim, 1991). However,
similar findings for stocks without listed options suggest that these results may be spurious.
Consequently, Mayhew and Mihov (2004) find little support for a reduction in spot volatility
after controlling for the endogeneity of option listing. Kumar, Sarin, and Shastri (1998)
argue that option listings improve the market quality of the underlying stocks.

With the growth of credit derivatives over the last two decades, researchers have examined
the relation between credit default swaps (CDS) and bonds. Das, Kalimipalli, and Nayak
(2014) find a reduction in price efficiency and no improvement in bond liquidity following
the onset of CDS trading. In contrast, Ismailescu and Phillips (2015) suggest that prices of
sovereign bonds became more efficient following the inception of sovereign CDS contracts.

3 Institutional Background

We first provide background information on cryptocurrency cash markets (Section 3.1), and
then provide an overview of the current landscape of cryptocurrency derivatives (Section
3.2). Additional details about blockchains and cryptocurrencies are in Appendix A.
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3.1 Cryptocurrency cash markets and exchanges

Blockchain constitutes an electronic ledger that records entries in discrete chunks referenced
as blocks. Bitcoin was created as the first permissionless blockchain, and possesses a native
currency known as bitcoin. Bitcoin’s model has been imitated numerous times, leading
to a profusion of cryptocurrencies and other decentralized applications that feature native
tokens, which are typically classified as cryptocurrencies.

Bitcoin was launched as the first cryptocurrency in 2009. Many similar cryptocurrencies
started trading in subsequent years. Irresberger, John, and Saleh (2019) document 907
cryptocurrencies that possess market capitals exceeding $1 million. According to CoinMar-
ketCap (2021), there exist more than 5,000 listed cryptocurrencies as of May 2021, with a
market capitalization north of $2 trillion. Bitcoin is especially dominant and consistently
accounts for the largest market capitalization among all cryptocurrencies.

A unique feature of cryptocurrencies (e.g., BTC) is that they trade in multiple venues called
cryptocurrency exchanges. On these platforms, investors buy and sell cryptocurrencies in
exchange for fiat currencies (e.g., USD or EUR) or other cryptocurrencies. CoinMarketCap
(2020) reports that, as of April 2020, there exist 297 (66) cryptocurrency exchanges with an
aggregate daily trading volume over $2 million ($100 million). Investors may buy bitcoins
on one exchange and sell them on another, implying that bitcoins are fully fungible across
exchanges. Thus, cross-exchange prices of, say, BTC–USD, ought to be identical despite
being exchanged in multiple trading venues. Nonetheless, cross-exchange prices of a given
currency pair differ, likely due to exchange-specific risks and frictions.

The properties of cryptocurrencies – multi-listing and fungibility – make them an ideal
laboratory for studying the effect of bitcoin futures introduction on bitcoin cash markets.

3.2 Cryptocurrency derivatives

With the proliferation of cryptocurrencies has come a proliferation of cryptocurrency deriva-
tives. Bitcoin largely dominates as the underlying cash asset, but the menu of contracts
tied to other cryptocurrencies is growing. The significant bitcoin price volatility naturally
attracts speculative investors, but also other investors which hedge price movements.

A major distinction among existing derivatives is whether they are regulated or not. In
2015, the CFTC maintained that bitcoin is a commodity as defined under section 1a(9)
of the Commodity Exchange Act (CEA), and declared the same for ether in 2019. Thus,
bitcoin and ether derivatives are under the purview of the CFTC and regulated by the CEA.

The most prominent cryptocurrency derivatives are likely bitcoin futures, which were first
offered as CFTC-regulated contracts by the CME and the CBOE in December 2017. While
the CBOE stopped trading bitcoin futures in June 2019, trading volumes on the CME have
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been steadily rising, leading the CME to self-certify an increase of the spot month position
limits for its investors in October 2019. According to Cointelegraph, an average of 4,929
daily contracts were traded in its first two years of existence, corresponding to $182 million
in notional value (Avan-Nomayo, 2019). The CME started offering futures options in 2020,
ethereum futures in February 2021, and micro bitcoin futures are scheduled for May 2021.

Prior to the introduction of bitcoin futures by the CME and the CBOE, TeraExchange was
the first U.S. regulated swap execution facility to launch non-deliverable bitcoin forward
contracts in 2014. The CFTC approval of Tassat as a regulated crypto derivatives exchange
in 2019 adds to the growing number of swap execution facilities and designated contract
markets that offer cryptocurrency derivatives trading. Since September 2019, Bakkt offers
physically settled bitcoin futures and options, which are listed on the Intercontinental Ex-
change. Other regulated exchanges include, for example, LedgerX, which offers physically-
settled European style bitcoin options with maturities ranging between 1 week to 1 quarter.

Besides U.S.-regulated crypto derivatives exchanges, there is a bigger and growing mar-
ket of non-regulated cryptocurrency derivatives exchanges, with a proliferation of trading
platforms and product offerings. Several unregulated exchanges (e.g., Phemex, BitMex,
Bitfinex) offer up to 100 times leveraged perpetual futures contracts for various cryptocur-
rencies, including bitcoin, ethereum, ripple, litecoin, and EOS. These platforms are regis-
tered outside the U.S. and are, therefore, not accessible to U.S. customers. Countries take
vastly different approaches to regulation, with some countries (e.g., Singapore) being more
receptive to regulated platforms than others (e.g., United Kingdom).

TokenInsight (2021) estimates that more than $12 trillion in derivatives was traded in 2020.
Trading in regulated bitcoin derivatives is dominated by the CME. While less than 3% of
all trading happened on traditional exchanges in 2019, approximately 97% of it was taken
up by token futures trading. Trading volumes are heavily concentrated, with approximately
80% tied to bitcoin and ethereum contracts. Concentration is visible at the exchange level,
too. The top 3 (4) exchanges accounted for 85% (90%) of the annual trading volume in
2019, with BitMEX, OKEx, and Huobi DM (Bybit) recording $973 billion, $869 billion,
and $661 billion ($149 billion), respectively (Song and Wu, 2020; CryptoCompare, 2020).

In December 2019, New York Digital Investment Group was the first company to receive
SEC approval for a fund (Stone Ridge Trust) that invests in cash-settled bitcoin futures
traded on CFTC-regulated exchanges (Song and Wu, 2020). The SEC has since persistently
rejected proposals for bitcoin related ETFs by Winklevoss, VanEck, SolidX, and Bitwise.

4 Development of Hypotheses and Analysis

Several studies show that cryptocurrencies are prone to trading frictions (e.g., Makarov and
Schoar, 2020; Hautsch, Scheuch, and Voigt, 2019; Yu and Zhang, 2018). We, therefore, first
describe and quantify the characteristics of bitcoin exchange rates relative to fiat currencies.
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We consider characteristics related to price synchronicity and integration,
price efficiency, market quality, and liquidity, where Characteristici,j,t ∈
{Synchronicity, Efficiency, Quality, Liquidity}; i refers to cryptocurrency ex-
change rate pair (cross-exchange cryptocurrency exchange rate pairs) in the analyses on
efficiency, quality, and liquidity (synchronicity); j denotes the exchange trading platform
(exchange pair for synchronicity); t denotes the time of the observed characteristic. In the
appendix, we also consider measures of price volatility and arbitrage opportunities. In our
benchmark tests, we measure all characteristics at the monthly frequency using daily data.

In the presence of frictions, derivatives are non-redundant and may complete the market.
We thus examine how the BTC–USD futures introduction by the CBOE and the CME in
December 2017 impacts the efficiency, quality, price synchronicity, and liquidity of BTC–
USD relative to other bitcoin-fiat exchange rate pairs. Whether the introduction of futures
is beneficial or detrimental to the cash market is subject of a long-standing debate.

Several features of the bitcoin futures introduction are particularly useful for identifying the
impact of futures on cash markets. First, the BTC–USD futures introduction was largely
unanticipated until shortly before their inception. Figure 1.a shows that Google searches
for the word “bitcoin futures” were inexistent before the CME officially announced their
launch on October 31, 2017. Futures were also unlikely introduced in response to hedging
needs of institutional investors. They face regulatory barriers to invest in bitcoin through
unregulated exchanges, and major public institutions like JP Morgan officially denied their
participation in the cryptocurrency market at the time (e.g., Son, Levitt, and Louis, 2017).
In Figure D.1 of the appendix, we further show that that the number of “whale wallets”
with holdings above 1,000 bitcoins, a proxy for large investors, was decreasing before the
CME announcement.

Second, the futures contract was selectively introduced for BTC–USD, but not for other
currency pairs (e.g., BTC–EUR). Third, bitcoin is a close to perfect example of an identical
asset traded on multiple exchanges in the spirit of Hasbrouck (1995). As bitcoins are fully
fungible across exchanges, they ought to trade at the same price. Accordingly, observed
price differences of a currency pair across exchanges should be driven by exchange-specific
frictions, while price differences between BTC–USD and BTC–CCY exchange rate pairs
should be driven by market-specific frictions.3

Our identification strategy relies on comparing cross-sectional differences in the variation of
characteristics between BTC–USD and other bitcoin-fiat exchange rate pairs (BTC–CCY)
around the time of futures listing.4 Thus, to test whether the introduction of the BTC–
USD futures contracts is beneficial to USD-denominated bitcoin cash, we implement the

3We could include other control assets like bitcoin cash (BCH), which was created through a bitcoin
hard fork and which shares common characteristics with bitcoin. We focus on comparing BTC–USD and
BTC–CCY because they are identical assets and, therefore, fully fungible. Relying on fully fungible assets
helps better identify the effect of the introduction of bitcoin futures on the various characteristics.

4In the absence of BTC–USD, we replace it with BTC–Tether because of the one-to-one convertibility
between USD and the Tether stablecoin.
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following benchmark regression:

Characteristici,j,t = α0 + α1TreatmentBTC−USD × Postfutures + δi + ηj + γt + εi,j,t, (1)

where TreatmentBTC−USD is an indicator variable equal to one for the BTC–USD price
series and zero otherwise, Postfutures is an indicator variable equal to one after the introduc-
tion of the BTC–USD futures contracts in December 2017 and zero otherwise, and εi,j,t are
standard normal residuals. The parameters δi and ηj capture currency-pair and exchange
(or exchange pair for price synchronicity) fixed effects to absorb unobserved time-invariant
variation at the currency-pair and exchange (or exchange pair for price synchronicity) level,
respectively. We account for unobserved common factors through the time fixed effects γt.

In our most saturated regression, we exploit the within exchange variation of BTC-USD
relative to BTC-CCY and control for latent trends at the exchange level using the interaction
term ηj×γt. In our benchmark tests, we cluster the standard errors at the exchange-currency
pair level (or exchange pair level for price synchronicity) to correct for serial correlation.
In untabulated robustness tests, we verify that our results remain significant when we also
cluster at the time dimension.

4.1 Price synchronicity and integration

We measure price synchronicity using the Pearson correlation coefficient between cross-
exchange returns. Denote ri,j,t+1 = ln (pi,j,t+1/pi,j,t) the log return of cryptocurrency pair i
on exchange j from time t to t + 1, and pi,j,t the corresponding exchange rate levels. The
Pearson correlation coefficient of currency pair i between exchanges j and j′ is given by:

ρi,j/j′,t = cov
(
ri,j,t, ri,j′,t

)
/
(
σi,j,tσi,j′,t

)
, (2)

where cov (·, ·) denotes the covariance of pairwise log returns, and σi,·,t their standard de-
viations. We compute pairwise correlation coefficients at a monthly frequency using daily
data up to 3 months. Our results are similar if we use one month of daily observations
and non-overlapping data. This simple measure of price synchronicity is informative about
the cross-exchange alignment of cryptocurrency returns, and reflects, therefore, the pricing
efficiency of cryptocurrency exchange rates.

We also compute a non-parametric measure of cross-exchange price synchronicity. We adapt
the Kapadia and Pu (2012) measure of market integration based on the concordance of price
changes between stocks and bonds. Thus, we assume that cross-exchange prices are aligned
if returns move in the same direction, i.e., I

(
ri,j,t · ri,j′,t > 0

)
, and misaligned if they move

in opposite directions, i.e., I
(
ri,j,t · ri,j′,t < 0

)
, where I (·) is an indicator function that is

one if the condition inside the brackets is met and zero otherwise. The integration measure
κi,j/j′,t captures the frequency of price synchronicity over a trading horizon τ :

κi,j/j′,t =
M−τ∑
k=1

I
(
rτi,j,kr

τ
i,j′,k > 0

)
, (3)
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where we have M observations of daily price changes on two exchanges. We compute κi,j/j′,t
at the monthly frequency, using non-overlapping intervals over 90 days and a trading horizon
of τ = 1 day. We provide robustness tests using other frequencies and trading horizons in the
Appendix. We map κi,j/j′,t into Kendall’s Tau coefficient, Ki,j/j′,t =

[
2κi,j/j′,t/ (M − τ)

]
−1,

which has well-known properties for statistical inference. Higher values are associated with
more integration, with Ki,j/j′,t = 1 for perfectly synchronous cross-exchange returns.

4.2 Price efficiency

We measure the price efficiency of cryptocurrency log returns using the D1 measure pro-
posed by Hou and Moskowitz (2005). Thus, we first regress daily returns on their lags, and
the contemporaneous and lagged market returns rm,t up to 4 days:

ri,j,t = αi,j + βi,jrm,t +
4∑

n=1

δ−ni,j rm,t−n +
4∑

n=1

φ−ni,j ri,j,t−n + εi,j,t. (4)

We follow Benedetti (2018) and use the MVIS CryptoCompare Digital Asset 10 Index (a
modified market cap-weighted index that tracks the performance of the ten largest and most
liquid digital assets) as the market return in the cryptocurrency space.

If returns incorporate new information instantaneously, then βi,j is significantly different
from zero and the lagged coefficients δ−ni,j and φ−ni,j will be insignificant. If information is

incorporated with lags, then the lagged coefficients δ−ni,j are significantly different from zero.

The D1 measure compares the fit of a constrained model (Constrained R2), based only on
contemporaneous variables on the right-hand side of the regression in Equation (4), with
that of an unconstrained model (Unconstrained R2), which incorporates both contempo-
raneous and lagged data. D1 ∈ [0, 1] is defined as:

D1 = 1−
(

Constrained R2

Unconstrained R2

)
. (5)

We compute D1 at the monthly frequency using rolling windows of up to three months
of daily data. D1 measures the extent to which cryptocurrency returns are explained by
lagged information. Lower values are associated with greater cryptocurrency efficiency.

4.3 Market quality

We measure market quality/price accuracy using the q measure of Hasbrouck (1993). In
that model, (log) returns rt (we omit currency pair and exchange subscripts for simplicity)
reflect changes in the efficient price mt and changes in the pricing error st, such that
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rt = mt − mt−1 + st − st−1. Given the variances of returns (σ2r ) and pricing errors (σ2s),
respectively, the market quality measure q is defined by the normalized pricing error σ2s/σ

2
r :

q = 1− σ2s/σ2r , (6)

where a higher q indicates a higher market quality because prices deviate less from their
efficient level. We estimate market quality at a monthly frequency using the estimated
parameters {a, σ2e} of the MA(1) model rt = et−aet−1 over a 3-month window and compute
the resulting q measure defined as:

q =
σ2e − 2a · cov(et, et−1)

σ2e + aσ2e − 2a · cov(et, et−1)
∈ (0, 1) . (7)

For details, see Hasbrouck (1993) and Das, Kalimipalli, and Nayak (2014).

4.4 Liquidity

We compute four liquidity measures that are likely to be correlated with liquidity frictions.
First, we compute the Roll price impact measure (Roll, 1984), an estimate of illiquidity based
on the autocorrelation of price changes. Denoting by pi,j,t the log price of cryptocurrency
pair i (e.g., BTC–USD) on exchange j on day t, we estimate the covariance of log returns us-
ing a window of three months (one month for robustness), i.e., ĉovi,j,t = E (∆pi,j,t,∆pi,j,t−1).
We then compute, at a monthly frequency, the Roll measure defined as:

Rolli,j,t =

{
= 2
√
−ĉovi,j,t if ĉovi,j,t < 0

0 otherwise

}
. (8)

Second, we approximate bid-ask spreads through closing, low, and high (log) prices using
the CHL measure of Abdi and Ranaldo (2017). Given daily closing (ci,j,t), low (li,j,t),
and high (hi,j,t) prices of bitcoin currency i on exchange j at time t, we first compute
ηi,j,t = (li,j,t + hi,j,t) /2. We then compute, at a monthly frequency using windows of up to
three months of daily data (one month for robustness), the CHL measure defined as:

CHLi,j,t =
1

N

N∑
n=0

ŝi,j,t−n, where ŝi,j,t =
√

max{4(ci,j,t − ηi,j,t)(ci,j,t − ηi,j,t+1), 0}. (9)

Third, we consider trading volume in units of 1,000 bitcoins for each exchange and cryp-
tocurrency pair. We measure volume at the monthly frequency using the average daily
volume over three months. We examine windows of one month for robustness.

Fourth, we compute the Amihud illiquidity measure (Amihud, 2002). Given the volume
of currency i, say BTC–USD, at exchange j on day t (V olumei,j,t) and N daily observa-
tions, the Amihud price impact is computed as the average absolute return scaled by the
corresponding period’s volume:

Amihudi,j,t =
1

N

N∑
n=0

|ri,j,t−n|
V olumei,j,t−n

. (10)
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We compute the Amihud measure at the monthly frequency using three months of daily
data in our benchmark tests, and using one month in robustness tests.

We follow Dick-Nielsen, Feldhutter, and Lando (2012) and Schwert (2017) and construct
a liquidity factor λ to reduce the dimensionality of our data. For each currency pair i
traded on exchange j at time t, we construct λi,j,t as an equal-weighted average of all k
(k = 1, 2, 3, 4) liquidity metrics Lki,j,t:

λi,j,t =
1

4

4∑
k=1

Lki,j,t − µk

σk
, (11)

wher µk and σk are the mean and standard deviation, respectively, of liquidity metric
k computed over the entire sample period.5 We sign all variables so that a higher λ is
associated with greater illiquidity.

5 Evidence

We discuss the data in Section 5.1 and summary statistics in Section 5.2. Preliminary
evidence is illustrated in Section 5.3. We present the main results in Section 5.4.

5.1 Data

Our primary data source for digital currencies is Kaiko, a commercial vendor used in ear-
lier academic studies (e.g., Makarov and Schoar, 2020; Li, Shin, and Wang, 2018). Kaiko
provides price and trade information for transactions, timestamped to the millisecond, for
more than 80 different exchanges on which bitcoin trades against other fiat currencies. For
each transaction, the data include ticker symbol (e.g., BTC–USD), execution price, trade
quantity, time stamp, and an indicator that flags trades as buyer- or seller-initiated.

We augment the Kaiko data with price and trade information for additional exchanges and
currency pairs from CryptoCompare, a global cryptocurrency market data provider. These
data are sourced manually from CryptoCompare’s public data feeds.

We consider all cryptocurrency-exchange pairs with regular data availability between July
1, 2016 and December 31, 2018. Thus, we examine the evolution of all characteristics from
12 months before to 12 months after the introduction of the futures contracts in December
2017, excluding a 6-month anticipation period from July 2017 to December 2017 in the
run-up to the futures introduction. Our pre-event period runs from July 1, 2016 to June

5We use the logarithms of volume and Amihud due to the significant heterogeneity across exchanges.
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30, 2017, and the post-event period runs from January 1, 2018 to December 31, 2018.6 We
require a minimum amount of trading activity for an exchange to be included in our analysis
and, thus, drop exchanges with aggregate daily trading volumes below 1,000 bitcoin units.
Appendix B provides details regarding the data collection and cleaning process.

Our benchmark sample contains 10 bitcoin-fiat currency exchange rate pairs traded on
22 exchanges, with a total of 46 bitcoin-fiat currency-exchange pairs. In addition to the
treatment currency BTC–USD, our control group includes 9 exchange rate pairs: BTC–
EUR, BTC–GBP, BTC–HKD, BTC–SGD, BTC–JPY, BTC–AUD, BTC–IDR, BTC–CAD,
and BTC–RUB, traded on the following 22 exchanges: Bitfinex, bitFlyer, Bitstamp, Bit-
trex, BTCbox, BTCC, BTC–e, Cex.io, Coinbase, Exmo, Gatecoin, Gemini, HitBTC, itBit,
Kraken, LakeBTC, Liquid, OKCoin, Poloniex, QuadrigaCX, Quoine, and Zaif.

While BTC–USD trades on 19 exchanges, the BTC–EUR and BTC–JPY pairs trade on 9
and 6 exchanges, respectively; BTC–CAD, BTC–GBP, BTC–HKD, BTC–RUB, and BTC–
SGD trade on 2 exchanges, and BTC–AUD and BTC–IDR trade on only 1 exchange. Our
most restrictive tests that exploit the within exchange variation of BTC-USD relative to
BTC-CCY are based on the subsample of exchanges that have a minimum of one additional
bitcoin-fiat currency pair besides BTC–USD.

All cryptocurrency exchange rates are quoted in terms of number of fiat currency units
per bitcoin. Since our measures of market characteristics are based on returns and trading
volumes, we compute daily log returns using the last trade of each day. We aggregate
intraday quantities of traded bitcoins to obtain a measure of daily trading volume.

There exists evidence that cryptocurrencies are subject to price manipulation (Gandal,
Hamrick, Moore, and Oberman, 2018; Griffin and Shams, 2020), pump-and-dump schemes
(Li, Shin, and Wang, 2018), and wash trading (Cong, Li, Tang, and Yang, 2021; Aloosh
and Li, 2020; Amiram, Lyandres, and Rabetti, 2021). To alleviate concerns that our results
may be driven by exchanges exposed to manipulation, we exclude suspect trading platforms
in subsample analysis. In its ETF proposal filed with the SEC in April 2018, Bitwise Asset
Management Inc. highlights the incentives of cryptocurrency exchanges for inflating trading
volumes and identifies 11 exchanges with legitimate volumes: Binance, Bitfinex, Kraken,
Bitstamp, Coinbase, bitFlyer, Gemini, itBit, Bittrex, Poloniex, and Cex.io. In our analysis,
we assume that the exchanges that are not among these 11 exchanges are prone to trading
volume manipulation.

5.2 Descriptive statistics

We first describe the trading activity across currencies and exchanges. Panel A of Table 1
shows that the aggregate trading volume across our exchanges increases from 11.383 million

6In our benchmark regressions with metrics computed using 3 months of daily data, we exclude observa-
tions in January and February 2018 because they contain information from before the futures introduction.
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BTC in Q3 2016 to a peak of 22.977 million BTC in Q4 2017, the month of the futures
introduction, and then decreases again to 14.739 million BTC in Q4 2018.

Trading activity is dominated by BTC–USD, which accounts on average for about 53% of
all volume, with a market share ranging between 32.36% in Q4 2016 to 69.37% in Q3 2017.
Trading in BTC–JPY (BTC–EUR) ranks second (third), with market shares that fluctuate
between 18.04% and 58.55% (5.08% and 12.64%). There is less trading activity in other
cryptocurrencies, which account for about 3.11% of aggregate trading activity, on average.

In Panel B of Table 1, we illustrate the dispersion of trading activity across the five largest
exchanges in terms of BTC–USD trading activity between July 1, 2016 and December 31,
2018: Bitfinex, Coinbase, Bitstamp, Gemini, and HitBTC. The largest exchange, Bitfinex,
captures up to 40.9% of all BTC–USD volume in Q1 2018, followed by Coinbase (up to
16.56%, Q2 2017) and Bitstamp (up to 15.27%, Q2 2017). The residual category “All
others” accounts for up to 54.22% of all BTC–USD trading, suggesting a non-trivial amount
of trading across multiple exchanges.

While trading volumes in BTC-EUR are lower than those for BTC–JPY, BTC–EUR trading
is spread out across more exchanges. In our benchmark tests, we, therefore, independently
compare BTC–USD to BTC–EUR. Panel C in Table 1 shows the cross-exchange distribu-
tion of BTC-EUR trading volume between July 1, 2016 and December 31, 2018. Kraken
dominates BTC–EUR trading and accounts, on average, for about 62.21% of all BTC–EUR
volume. Next, Bitstamp, Coinbase, Quoine, and Cex.io, record market shares of 13.43%,
12.18%, 5.06% and 2.31%, respectively. The remaining 4.81% of trading for the residual
category is spread across 4 exchanges. Note that the largest exchanges are not the same
across currency pairs, suggesting a fair amount of heterogeneity across exchanges. Our
(untabulated) statistics also indicate that BTC–USD volumes are on average about 7 times
larger than those of BTC–EUR, which range from about 578 thousand BTC in Q3 2016 to
1.978 million BTC in Q1 2018.

Bitcoin prices went through a period of boom and bust. Figure 1.b shows that bitcoin
first peaked at approximately $20,000 around the introduction of the futures contracts in
December 2017. Bitcoin prices then lost about 75% in value over the subsequent year. As
of February 2021, bitcoin has surged back up north of $40,000.

In Table 2, we provide summary statistics for daily bitcoin exchange rate returns by currency
pair and exchange. In Panel A, we focus on BTC–USD. The return distributions are
similar across exchanges, with average returns around zero, ranging between 0.13% and
0.39%, and standard deviations ranging between 3.74% and 5.02%. All distributions exhibit
mild negative skewness (except for HitBTC, Liquid, and Quoine) and kurtosis that ranges
between 5.88 and 9.93. The return distributions of BTC–EUR and all other bitcoin-fiat
currency exchange rates, reported in Panels B and C, respectively, are similar, although the
return distributions reported in Panel C exhibit more leptokurtic distributions and more
often positive skewness.
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In Table 3, we report summary statistics for our measures of price synchronicity, market
efficiency, market quality, and liquidity. For each metric, we compare the statistics between
BTC–USD and the 9 other cryptocurrency exchange rate pairs. Their unconditional means
are comparable for measures of price synchronicity, efficiency, quality, the Roll price impact
measure, and bid-ask spreads (CHL). For example, the average efficiency measure D1 is
0.3069 for BTC–USD and 0.3305 for other exchange rate pairs. Similarly, the corresponding
market quality is on average 0.9449 and 0.9370, while the average bid-ask spread is 1.45%
and 1.55% for BTC–USD and BTC–CCY, respectively. The distributions for these metrics
look broadly similar across groups.

In contrast, BTC–USD exhibit significantly greater trading volume, and less price impact
based on Amihud’s price impact metric. For instance, the average daily trading volume for
BTC–USD is 4,622, while it is only 2,735 BTC for other currency pairs. Average Amihud
values, which capture the price impact per unit of trading volume, are large because daily
trading volume is often low. The median values suggest that the average daily price impact
is 1.98% per 1,000 BTC, while it is 14.90% for other currency pairs.

5.3 Preliminary evidence

We provide preliminary evidence using changes in BTC–USD price synchronicity around
the introduction of bitcoin futures. We report in Table 4 Pearson correlation coefficients
for daily cross-exchange BTC–USD returns in the pre- and post-event periods. For brevity,
we focus on the five biggest exchanges by volume between July 1 and December 31, 2016.

The correlation coefficients in the pre-event period range between 0.8751 and 0.9812. That
heterogeneity in price synchronicity suggests that cross-exchange prices of fully fungible
BTC–USD exchange rates were not aligned before the futures introduction. The correlation
coefficients significantly increase in the post-event period, indicating an increase in cross-
exchange price synchronicity. For example, the correlation between returns on Bitfinex and
Quoine increases from 0.8751 to 0.9856 after the futures listing. Similarly, the correlation
coefficient between returns for trades registered on itBit and Bitfinex increases from 0.9437
to 0.9929. The notable heterogeneity in terms of levels and dynamics of return correlations
is useful for identifying the impact of futures introduction on cash markets.

Our identification strategy relies on comparing the evolution of, for example, price syn-
chronicity between BTC–USD and BTC–CCY, i.e., all other bitcoin-fiat currency exchange
rate returns. Thus, we compute the average pairwise return correlation across all exchanges
for BTC–USD and BTC–CCY in both the pre- and post-event periods. Figure 2 shows
the average difference between both categories before and after the futures announcement
(first vertical line) and introduction (second vertical line), in addition to the difference in
correlations computed in rolling windows of 90 days. The figure highlights a pronounced
shift in October 2017 when the futures launch was announced. Before the introduction,
the average return correlation for BTC–USD returns is about five percentage points lower
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than that of all other pairs (dotted horizontal line). In the period following the futures
introduction, it is about five percentage points higher. This suggests that the increase in
correlations following the introduction of the futures contract is much more pronounced for
BTC–USD than for other exchange rate pairs. We now proceed to a more formal analysis
of the changes in integration, quality, efficiency, and liquidity of cryptocurrencies around
the futures introduction.

5.4 Main results

We successively discuss the results for price synchronicity and integration, price efficiency,
market quality, and liquidity. For each characteristic, we estimate the model in Equation
(1) to test whether the futures introduction in December 2017 made cryptocurrency cash
markets more integrated, efficient, liquid, and informative. The null hypothesis is that there
is no differential impact for BTC–USD (the treatment group) and other bitcoin-fiat currency
pairs (i.e., BTC–CCY, the control group) following the BTC–USD futures introduction.

Price synchronicity and integration

In Panel A of Table 5, we report the results for price synchronicity, as measured by the
cross-exchange Pearson correlation coefficients between cryptocurrency returns. The result
in column (1) suggests that, unconditionally, pairwise correlations are on average 5.3 per-
centage points lower for BTC–USD returns. Further, the level of correlations drops by about
7.3 percentage points after the futures listing. This is largely the result of exchanges that
are suspected to be exposed to market manipulations, which we have formally validated in
unreported results.

The main coefficient of interest is the one associated with the interaction term Treatment×
Post. This coefficient is highly statistically significant with a point estimate of 0.121, which
is economically meaningful. The magnitude of the coefficient hardly changes if we add a
battery of fixed effects in columns (2) to (5). In column (2), we add exchange-pair fixed
effects to absorb unobserved and time-invariant heterogeneity at the exchange-pair level,
thereby accounting for cross-exchange differences in the level of price synchronicity. In
column (3), we control for monthly time fixed effects to absorb common temporal variation
in price synchronicity across exchanges. In column (4), we add currency-pair fixed effects
to capture time-invariant differences across bitcoin currency pairs. Adding all fixed effects
together in column (5) has little impact on the coefficient’s magnitude.

In the most conservative specification in column (6), we compare variation between BTC–
USD and BTC–CCY at the exchange-pair level by controlling for unobserved time-varying
characteristics of exchange pairs. That specification indicates a statistically significant
increase in BTC–USD price synchronicity of 5.0 percentage points relative to BTC–CCY.
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In columns (7) to (9) of Table 5, we report subsample results when the treatment group
is restricted to BTC–EUR (EUR), BTC–CCY excluding BTC–EUR (CCY∗), or when we
exclude the exchanges that are suspected of manipulation (X-M). In all specifications, the
coefficient of interest remains significant and ranges between 0.050 and 0.144.

In Figure 3, we report a model-implied plot from an extended difference-in-differences regres-
sion in which we interact a treatment indicator for BTC–USD correlations with quarterly
fixed effects around the futures introduction. We use the third quarter in 2017 as the base
for comparison. Each point estimate in Figure 3 thus represents the relative difference in
price correlations between BTC–USD and other bitcoin exchange rate pairs at a particular
point in time.

In the pre-event period, none of the coefficients is statistically significant, suggesting that
the parallel trend assumption needed for the valid inference of the difference-in-differences
test is respected. In the fourth quarter of 2017, when BTC–USD futures start trading, the
difference-in-differences estimator jumps up to about 3.15%, and all following estimates are
significantly different from zero. The coefficient increases to about 15.48% in the fourth
quarter in 2018, indicating that the differential increase in BTC–USD price correlations
relative to other bitcoin-fiat currency pairs between Q3 2017 and Q4 2018 is about 15.48
percentage points. This evidence supports the view that the introduction of BTC–USD
futures contracts is associated with an increase in BTC–USD cross-exchange price syn-
chronicity that is not similarly experienced by other exchange rate pairs.

In Panel B of Table 5, we examine the impact of futures listing on the Kapadia and Pu
(2012) non-parametric measure of price synchronicity κ. Higher values of κ reflect a higher
degree of cross-exchange price integration. The results in columns (1) to (5) suggest again
that there is a positive and statistically significant increase in price integration for the
treatment group relative to the control group. The average differential increase in the
frequency of price concordance ranges between 11.8 and 13.5 percentage points. Given the
average BTC–USD value for κ of 0.7003, this change is economically meaningful.

Based on the most conservative estimate reported in column (6), where we compare the
change in price synchronicity around futures listing for BTC–USD relative to BTC–CCY
at the exchange-pair level, the differential increase in the frequency of price concordance
is 4.7 percentage points. The results in columns (7) and (8) suggest that the increase in
integration of BTC–USD returns is stronger relative to BTC–EUR than relative to other
currency pairs. In the subsample results for exchanges that are not accused of market
manipulation, the coefficient estimate is 0.114.

Market quality

We next discuss the implications of the futures introduction for market quality, as measured
by the q metric of Hasbrouck (1993). Specifically, we report in Panel A of Table 6 the results
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from the projection of the market quality metric on the BTC–USD treatment indicator, the
post-futures introduction event dummy, and their interaction. Unconditionally, we find
no significant difference in market quality between BTC–USD and other cryptocurrency
exchange rates. In columns (1) to (6), we do, however, find that the market quality of
BTC–USD increases relative to all other cryptocurrency exchange rates, with a statistically
significant coefficient estimate of around 3.0% to 3.8%. That coefficient remains significant
in our most conservative specification in column (6), where we examine the within exchange
variation of BTC–USD relative to other cryptocurrency exchange rates. The coefficients
are of roughly similar magnitudes for the subsample results with different treatment groups
in columns (7) and (8). The coefficient is insignificant for the subsample of exchanges that
are free from alleged manipulation, as shown in column (9), but this insignificance could be
driven by a lack of power as we lose a non-trivial number of observations.

Price efficiency

In Panel B of Table 6, we report the results for the D1 price efficiency measure suggested by
Hou and Moskowitz (2005). In unreported results, we find that the results are insignificant
for the aggregate sample, which is primarily due to noisy measurements of the D1 metric
for cryptocurrency exchange rate returns other than BTC–USD and BTC–EUR. For that
reason, we only report the results where BTC–EUR is the comparison group.

A lower D1 metric indicates that prices are more efficient, in the sense that new informa-
tion gets more quickly incorporated into prices. The negative and statistically significant
coefficient estimate in all specifications suggests that the increase in price efficiency is more
pronounced for BTC–USD following the BTC–USD futures introduction. The differential
increase in price efficiency ranges from 2.7% to 7.8%. This is economically meaningful, as
the average efficiency measure for BTC–USD (BTC–CCY) is 30.69% (33.05%), as reported
in Table 3. Importantly, we note a differential increase in price efficiency both across ex-
changes (columns (1) to (5)) and within exchange (columns (6) to (7)). Overall, we find
support for the hypothesis that the derivatives introduction improves the price efficiency of
the underlying cash market.

Liquidity

In Table 7, using the aggregate liquidity factor λ, we evaluate whether the introduction
of BTC–USD futures is associated with an improvement of BTC–USD liquidity relative
to other exchange rate pairs. We find a statistically significant improvement in liquidity
across the specifications reported in columns (1) to (8). That impact is also economically
significant. For example, the magnitude of the estimated coefficient of 0.351 in column (4)
corresponds to about 55% of the standard deviation of λ for BTC-USD. Importantly, the
coefficient’s magnitude is stable across specifications with different fixed effects.
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The liquidity factor is computed as an equal-weighted average of standardized liquidity
metrics, whereby the mean and standard deviation are computed across the entire sample.
To account for significant differences across exchanges and currencies, especially for volume
and Amihud, we include in our most conservative specifications in columns (5) to (9) inter-
actions of exchange and currency fixed effects. This effectively absorbs such level differences
across currency-exchange pairs and also accounts for related selection effects. We find that
these specifications do not significantly impact the magnitude of our results.

The coefficient is reduced by half to −0.170 for the specification reported in column (6),
where we add interaction terms of exchange and month fixed effects. Thus, we compare the
evolution of BTC–USD and BTC–CCY around the futures introduction at the exchange
level, while controlling for unobserved time-invariant differences across exchange and cur-
rency pairs. Even in this conservative specification, the coefficient estimate still corresponds
to about 27% of the sample standard deviation of λ for BTC-USD.

Only the estimate in column (9) for the subsample of non-manipulated exchanges is in-
significant. This is likely the result of a loss in power in combination with the use of many
fixed effects, as the coefficient’s magnitude does not change, standard errors increase, while
the number of observations drops.

We also discuss and report results for the individual liquidity metrics in Section 6.4. These
results are qualitatively similar to those based on the aggregate liquidity factor λ.

6 Refinements, Channels, and Robustness

We strengthen the evidence about the impact of BTC–USD futures on the bitcoin cash
market by exploiting the futures settlement mechanism. In addition, we shed light on the
potential channels for our results, and we provide evidence that the results are associated
with improvements in BTC rather than USD. We end the section with robustness tests.

6.1 Evidence around the fixing of the settlement index

We exploit the institutional details of the futures settlement index to provide additional
supportive evidence for our hypothesis. The respective contracts on the CME and the
CBOE rely on different indices, which are fixed at different times of the day.

The CME bitcoin futures are cash settled based on the CME CF bitcoin reference rate
(BRR) determined at 4:00 p.m. London time on the expiration day of the futures contract.
The BRR is computed daily and represents the USD value of one bitcoin at its fixing time.
Designed jointly by the CME and CF Benchmarks, it is constructed to ensure its “resilience
and replicability” and represents a weighted average of prices registered for trades executed
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on the four constituent exchanges between 3:00 p.m. and 4:00 p.m. London time each day.
The four constituent exchanges are itBit, Kraken, BitStamp, and GDAX.

Futures contracts on the CBOE are also cash settled but rely on a different bitcoin cash
price. Specifically, contract values are based on the official USD auction price for bitcoin,
which is determined at 4:00 p.m. Eastern time by the Gemini exchange.

Given that cash indices for futures settlement are computed at 4:00 p.m. Eastern and Lon-
don times, respectively, we expect greater trading activity around these fixing times, with
more reliable and less noisy prices (see Aleti and Mizrach (2021) for supporting evidence).
Hence, our results should be sharper if we focus our analysis on prices obtained during the
fixing times from those exchanges used in the computation of settlement indices. Thus, we
repeat our analysis using daily returns with prices sampled from the Gemini Exchange at
4:00 p.m. Eastern time, and prices sampled from itBit, Kraken, and BitStamp at 4:00 p.m.
London time. The GDAX exchange is not covered by our data.

In Table 8, we report the results from the difference-in-differences regressions after we
sample prices at 4:00 p.m. on the corresponding exchanges. For a fair comparison, we
also report identical regressions based on the same sample composition when prices are
sampled end-of-day. We emphasize that the observations drop significantly in Table 8, as
the analysis is restricted to four exchanges. This has implications for the statistical power
of our tests. Despite this caveat, there is some support for stronger results when prices are
sampled around times when the futures settlement indices are computed.

In Panel A, we find supportive evidence for an increase in market quality using prices sam-
pled at 4:00 p.m. in the specification without fixed effects in column (4) and with exchange,
month and currency fixed effects in column (5), while results based on prices sampled at the
end-of-day are statistically insignificant (columns (1) and (2)). The estimated coefficients
in columns (2) and (5) are statistically different from each other at the 10% significance
level.

In Panel B, we focus on the aggregate liquidity metric λ. The coefficient estimates in
columns (1) to (6) are all significant at the 1% to 5% significance level. However, the
economic magnitudes of the coefficients in columns (4) to (6) are significantly larger than
those in columns (1) to (3), indicating that the effects are stronger when we sample the
prices around 4:00 pm. In the appendix, we provide qualitatively similar results using the
individual liquidity metrics Roll, Amihud, and bid-ask spreads.

As we do not find any differential effects for the analysis of price synchronicity, we do not
report the results. We cannot conduct the same tests for price efficiency because the market
return is observed only end-of-day. Overall, our findings are supportive of stronger results
when we focus on prices at times that are more relevant for the futures markets and during
which prices could potentially be less noisy.
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6.2 Channels

Our evidence suggests that, following the introduction of BTC–USD futures contracts,
BTC–USD cash prices become more aligned, allow for fewer arbitrage opportunities, and
exhibit a higher degree of market quality and price efficiency. We next explore the channels
through which this effect may arise. We focus on two plausible explanations related to a
reduction in trading frictions and a reduction in informational frictions.

Shleifer and Vishny (1997) suggest that arbitrage opportunities may arise if there is a lack of
arbitrage capital. This could be reflected in large transaction costs such as bid-ask spreads
or price impact measures. In the specific context of integration between credit and equity
markets, Kapadia and Pu (2012) relate the discordance in prices to idiosyncratic volatility
and other measures typically associated with illiquidity.

An imperfect alignment of prices could also be due to a lack of investor attention (Duffie,
2010). Inattention may be driven by distraction (Hirshleifer, Lim, and Teoh, 2009), limited
cognitive resources (Peng and Xiong, 2006), or costly information acquisition (Nieuwerburgh
and Veldkamp, 2010).

While we cannot directly measure limitations to free movement of arbitrage capital or in-
vestor attention, we examine whether there are cross-exchange differences in the treatment
effect according to exchange-specific measures that are correlated with trading frictions and
investor attention. We examine cross-sectional differences for the results of price synchronic-
ity. For trading frictions, we use the average value of the liquidity factor λ for each exchange
in the pre-event period. For attention, we collect the average Google search intensity for
each exchange name in the pre-event period. To ensure comparability across exchanges, we
download each exchange’s search intensity together with that of the word “bitcoin”. Using
these measures of attention and illiquidity, we run triple difference-in-differences regressions:

Price Synchronicityi,j,t = α0 + α1TreatmentBTC−USD × Postfutures
+ α2TreatmentBTC−USD ×High Attention (or High Liquidity)

+ α3High Attention (or High Liquidity)× Postfutures
+ α4TreatmentBTC−USD × Postfutures ×High Attention (or High Liquidity)

+ δi + ηj + γt + εi,j,t,

(12)

where High Attention (High Liquidity) is one if the average search intensity (average
liquidity λ) of the pair of exchanges used to compute the price synchronicity measure in the
pre-event period is above (below) the sample median and zero otherwise. All other variables
are defined in Equation (1). Thus, we test whether, following the futures introduction,
any improvement in BTC–USD asset characteristics relative to those of other bitcoin-fiat
currency pairs is greater on exchanges that have lower transaction costs or more attention.

The results in Table 9 are supportive of the liquidity but not the attention channel. The
triple interaction coefficient is statistically significant across all specifications in Panels
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B and D, and insignificant in Panels A and C. This suggests different impacts from the
introduction of bitcoin futures on bitcoin cash markets for exchanges with high and low
liquidity. Surprisingly, however, we find that the results are weaker for exchanges with
higher liquidity. We speculate that exchanges where liquidity was already high in the pre-
event period had higher price synchronicity before the futures introduction. The potential
improvement in price synchronicity is, therefore, smaller relative to the other exchanges.
In the appendix, we report similar findings when we use the individual liquidity metrics
instead of the aggregate liquidity factor.

In unreported tables, we conduct triple difference-in-differences analyses for price efficiency,
market quality, and liquidity measures with the same specifications as in columns (1) to (6)
of Tables 6 and 7. We observe that the results for Roll’s measure and the q measure are
weaker and statistically significant at the 5%-10% level with higher liquidity. Moreover, the
results for the Amihud price impact measure are weaker and statistically significant at 10%
level in the most conservative specification with greater liquidity. The results for CHL, D1,
and volume are statistically insignificant. Overall, the results are largely consistent with
those for price synchronicity.

6.3 Triangular arbitrage

We find that the introduction of bitcoin futures is associated with a greater price alignment
of BTC–USD than of, for example, BTC–EUR. This result may seem surprising given
the possibility of triangular arbitrage through a liquid EUR–USD exchange rate. However,
Makarov and Schoar (2020) explain that “customers from different countries can usually only
trade cryptocurrencies on their local exchange and in their local currency.” Thus, arbitrage
across cryptocurrency-fiat exchange rates within exchange is challenging (Dyhrberg, 2020).
That argument is reinforced by the inability to trade a pure fiat exchange rate (e.g., EUR–
USD) on the cryptocurrency exchanges in our sample.

In contrast, triangular arbitrage may be easier if it involves two cryptocurrency assets in the
triangular relation, without a pure fiat exchange rate. We examine this conjecture using the
second most popular cryptocurrency ether (ETH) as another test asset. This also allows us
to keep the characteristics of the fiat currency leg constant. Notably, every exchange that
lists both BTC–USD and ETH–USD also lists BTC–ETH. Consistent with that view, our
results in columns (1) to (4) of Table 10 indicate that the futures introduction is associated
with a greater increase in price synchronicity for BTC–USD relative to ETH–USD across
exchanges, but not within exchanges.

Finally, to emphasize that we capture a bitcoin rather than a USD effect, we report our
benchmark tests when we compare the impact from the futures introduction on ETH–USD
relative to ETH–CCY. Based on the results in columns (5) to (8) of Table 10, we find no
significant difference between both exchange rates.

24



6.4 Robustness and Additional Tests

Besides the robustness analysis that we explain in our main text, we conduct a battery
of additional robustness tests to further ensure the validity of our main findings. Here, we
limit ourselves to a discussion of these results, which are provided in the Internet Appendix.

We first revisit our benchmark results when we compute all market characteristics at dif-
ferent frequencies. In Table C.2, we report our benchmark results when we compute our
measures of price synchronicity, market quality, efficiency, and liquidity at a monthly fre-
quency using a rolling window of one month of daily returns. In contrast to a rolling window
of three months of daily returns, this eliminates any data overlap in the construction of our
metrics of market characteristics.

In Panels A and B of Table C.2, we report the coefficient estimates under the specification
that corresponds to columns (5) and (6), respectively, in Tables 5, 6, and 7. The statistical
significance and economic magnitudes of the coefficient estimates are comparable to those
that we observe in our benchmark results, suggesting that our baseline results are robust to
the specific choice of the length of rolling windows used to compute market characteristics.

In Appendix Table C.3, we repeat the same analysis when we compute all metrics at the
daily (as opposed to monthly) frequency using rolling windows of 30 and 90 days. Neither
the data frequency nor the choice of rolling windows is material for our findings. We observe
that, using longer windows for measures of market quality and price efficiency, results are
either statistically and economically stronger or remain unchanged. In untabulated results,
we observe similar patterns when we change the length of the window to 180 days.

In Appendix Table C.4, we show that our results for price integration are robust to an
alternative trading horizon of five days. The analysis yields similar statistical significance
with a lower economic magnitude. This suggests that asynchronous price movements are
more pronounced at shorter horizons, and that arbitrageurs are partially disciplining prices
over longer trading horizons (Makarov and Schoar, 2020).

In our baseline regressions, we exclude the observations in the anticipation period. In Table
C.5, we show that our results are robust to different definitions of the pre-event and post-
event periods. Columns (1) to (4) in each Panel correspond to the baseline results from
column (5) in Tables 5, 6, and 7, while those in columns (5) to (8) correspond to the baseline
results from column (6) in the same tables.

In columns (1) and (5) of Table C.5, we exclude observations from the anticipation period
and from January and February 2018. This is because our metrics computed at the monthly
frequency with a rolling window of three months of daily returns partially contain infor-
mation from the anticipation period; in columns (2) and (6), we only exclude observations
from the anticipation period; in columns (3) and (7), we exclude the observations from
January and February 2018. in columns (4) and (8), we do not exclude any observations.
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The magnitudes and statistical significance of the coefficients are largely consistent with
those of our baseline results.

In untabulated results, we find that our results for several measures (including Roll, CHL,
and D1) become stronger if we shorten the length of the post-event period by 6 months to
June 2018. This suggests that the effect of the introduction of futures on the cash market’s
liquidity and efficiency is more pronounced in the early part of the post-event period.

We also conduct two placebo tests by considering hypothetical announcement dates on
January 1, 2017 and July 1, 2018. Panels A and B in Table C.6 report the results for each
of our metrics using three months before and after these hypothetical event days. None of
the treatment effects is statistically significant.

In Appendix Table C.7, we show that our results are robust to different ways of clustering
and standard error correction. We again provide specifications for the baseline results
corresponding to the specifications in columns (5) and (6) from Tables 5, 6, and 7. These
results are again consistent with our benchmark findings.

In our baseline results, we provide evidence for subsamples that compare BTC–USD to
BTC–EUR, because BTC–EUR trades on more exchanges than BTC–JPY, which is a dom-
inant trading currency in the BTC space. For robustness, we provide in Table C.8 results
for the comparison with BTC–JPY. These findings largely confirm our earlier evidence.

In Appendix Table C.9, we provide the difference-in-differences results for the individual
liquidity metrics. For Roll’s measure of liquidity in Panel A, we find a statistically significant
effect across all specifications reported in columns (1) to (6). The reduction in price impact
ranges between 0.005 to 0.007. The differential change in price impact corresponds to about
31% of the average price impact of 0.0163 measured for BTC–USD returns, as reported in
Table 3. If we focus on the subsample of BTC–EUR exchange rates in the treatment group
in column (7), the magnitude of the regression coefficient doubles. For the subsample results
in columns (8) and (9), the coefficient is insignificant.

In Panel B of Table C.9, we report the results for bid-ask spreads. We find a negative and
significant coefficient on the interaction term in columns (1) to (5) when we compare the
evolution of cross-exchange bid-ask spreads between BTC–USD and other cryptocurrency
exchange rates. However, the coefficient is insignificant for the within exchange comparison
reported in column (6). The results in columns (7) to (9) suggest that the reduction in bid-
ask spreads is primarily driven by an improvement of BTC–USD relative to BTC–EUR.
The average bid-ask spread for BTC–USD is 0.0145, with a standard deviation of 0.0064
(see Table 3.) Thus, the estimate represents a reduction in bid-ask spreads of about 14%,
and corresponds to approximately one third of the sample variation in bid-ask spreads.

The results for (log) volume are reported in Panel C of Table C.9. The results for volume are
only weakly significant at the 5%-10% level across selective specifications. We suspect that
these results are noisy and less reliable because of the evidence about volume manipulation
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and wash trading reported by Gandal, Hamrick, Moore, and Oberman (2018); Cong, Li,
Tang, and Yang (2021); Aloosh and Li (2020); Li, Shin, and Wang (2018); Amiram, Lyan-
dres, and Rabetti (2021). Indeed, when we focus on the subset of exchanges that are not
allegedly involved in market manipulation, as pointed out by Bitwise, we find a statistically
significant coefficient estimate of 1.941 in column (9). Specifically, the results suggest that
the differential increase in trading volume for BTC–USD is about 194%.

Finally, in Panel D of Table C.9, we report the estimated coefficients for the Amihud price
impact measure. As for the other measures, we find a reduction in price impact following
the futures listing which is significantly greater for BTC–USD than for other exchange
rate pairs. In the fully saturated specification in column (5), the estimated coefficient for
the interaction between the futures listing indicator and the BTC–USD treatment group
is –1.60, indicating a differential reduction in price impact of approximately 160%. This
effect is primarily driven by currency pairs other than BTC–EUR, as we see a greater
statistical significance and a greater magnitude of the coefficient in column (8). We observe
a statistically and economically significant coefficient estimate of -2.059 in column (9),
indicating that the effect is larger for the exchanges that are less prone to trading volume
manipulation. This is possibly because the Amihud measure, which is based on trading
volume, is more reliably estimated for those exchanges.

In Appendix Table C.10, we revisit the evidence using prices sampled from futures settle-
ment times for the individual liquidity metrics. In Panel A, we study the effect on Roll’s
price impact measure. While the coefficient estimate for the interaction term is close to
zero and statistically insignificant using end-of-day prices in columns (1) to (3), it becomes
negative and statistically significant at the 5% or 10% level in specifications using 4:00 p.m.
prices in columns (4) to (5). While the coefficient estimate in column (6) is insignificant, it
is negative, whereas the coefficient estimate is positive in column (3).

In Panel B of Table C.10, the results for bid-ask spreads based on end-of-day prices are
insignificant. Using prices that are more relevant for the futures market, we find a negative
and weakly significant effect in the specification without fixed effects in column (4) and with
exchange × currency and month fixed effects in column (5). In column (6), the coefficient
magnitude is more negative than the one reported in column (3), although the coefficient is
insignificantly estimated. In Panel C, we find that the results for the Amihud price impact
measure have similar statistical significance in both samples, but the economic significance
becomes stronger if we use 4:00 p.m. prices.

In Appendix Table C.11, we further support the evidence of a liquidity channel discussed
in Section 6.2 based on the aggregate liquidity factor λ. We repeat the analysis using
the individual liquidity metrics Roll, Amihud, volume, and bid-ask spreads. Our findings
support the view that the differential impact of the futures introduction on BTC–USD
relative to BTC–CCY is amplified for currency-exchange pairs that are above/below the
median level of liquidity.

In Appendix Table C.12, we strengthen our evidence by showing results for additional
cryptocurrency attributes. In Panel A, we consider an annualized measure of volatility
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computed as the standard deviation of daily log returns. In Panel B, we report results for
an arbitrage index measured using the absolute price deviation between prices measured
across a pair of exchanges. These results are largely in line with our earlier evidence and
suggest that there is a drop in volatility and a reduction in arbitrage opportunities following
the futures introduction.

Finally, we consider additional evidence from the introduction of ethereum futures by the
CME in February 2021. As for the introduction of bitcoin futures, the CME selectively
launched contracts on ETH against the USD, but not against other fiat exchange rates.
Thus, we consider the impact of the futures introduction on ETH–USD relative to ETH–
CCY from three months before the announcement of ethereum futures on December 15,
2020 to three months after the contract launch on February 8, 2021. We describe the data
for this extension in Appendix B.2 and report results for our measures of price synchronicity
in Table C.13.

Panel A in Table C.13 presents the results for cross-exchange price correlations. This
table highlights that, regardless of the specification, the increase in cross-exchange price
synchronicity is larger for ETH–USD than for other ETH exchange rates. The most con-
servative specifications in columns (5) and (6) suggest an increase in correlations of 1.9 and
1.6 percentage points. This economic magnitude is smaller than that reported in Table
5 for the introduction of bitcoin futures, which is intuitive, given that the cryptocurrency
market may have matured over the three years since the introduction of the first regulated
cryptocurrency futures in 2017. The results for market integration in Panel B of Table C.13
provide a qualitatively similar picture.

7 Conclusion

The U.S. CFTC approved the launch of bitcoin futures contracts in December 2017 be-
cause it was widely believed that it would make bitcoin prices better reflect fundamental
values. Currently, numerous proposals for bitcoin ETFs are being denied by the SEC due to
concerns of manipulation in related spot markets. Despite the ongoing regulatory debates,
there exists no evidence on how the listing of derivatives products linked to cryptocurrency
assets affects the underlying cash market’s characteristics such as price efficiency and market
quality. We take a first step to fill this gap.

Specifically, we examine how the introduction of bitcoin futures contracts in December 2017
affects the price synchronicity, efficiency, market quality, and liquidity of the underlying cash
market. We exploit a unique feature of the cryptocurrency market, where fully fungible
assets with identical cash flows trade on different exchanges. As futures contracts were
selectively introduced for BTC–USD, and not for other bitcoin-fiat currency pairs, we can
isolate cross-sectional variation at the exchange level and examine whether the bitcoin
futures introduction was beneficial to the underlying cash market.
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Our results suggest that the BTC–USD futures introduction significantly enhanced the
price synchronicity of BTC–USD relative to other cryptocurrency exchange rates, and that
this was accompanied with an increase in cross-exchange integration of BTC–USD prices.
Moreover, we find supporting evidence for an increase in pricing efficiency, market quality,
and liquidity.
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Figure 1: Bitcoin Futures Google Search Intensity and Bitcoin Price History

In Figure 1.a, we plot the Google search intensity for the word “bitcoin futures” between
July 1, 2016 and December 31, 2018. Google search data is available at https://trends.

google.com/trends/explore?date=today%205-y&q=bitcoin%20futures. In Figure 1.b,
we report the daily time series of BTC–USD prices for the sample period July 1, 2016 to
December 31, 2018. In both figures, the first dashed vertical line represents the CME’s first
announcement of the bitcoin futures launch on October 31, 2017. The second dashed line
represents the introduction of the first bitcoin futures contract by the CBOE on December
10, 2017.

(a)

(b)
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Figure 2: Bitcoin Cross-Exchange Return Correlations

In this figure, we illustrate the difference in the average pairwise cross-exchange Pearson
correlation coefficients between BTC–USD and all other bitcoin-fiat exchange rate returns.
Pairwise correlations are computed in rolling windows using 90 days of data, averaged
across exchanges for BTC–USD and BTC–CCY, respectively, where CCY refers to EUR,
HKD, GBP, CAD, JPY, SGD, AUD, RUB, IDR. The figure starts with a lag of 90 days
on September 28, 2016 and also ends on December 31, 2018. The first dashed vertical
line represents the CME’s first announcement of the bitcoin futures launch on October
31, 2017. The second dashed line represents the introduction of the first bitcoin futures
contract by the CBOE on December 10, 2017. Horizontal lines indicate the equally-weighted
average difference between pairwise return correlations in the pre-event and post-event
periods shown in this figure.
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Figure 3: Impact of Bitcoin Futures Introduction on Price Synchronicity

In this figure, we report the results from a difference-in-differences regression for the pairwise
cross-exchange return correlations ρi,j,t between USD–BTC and other bitcoin-fiat exchange
rate pairs. Specifically, we run the regression

ρi,j,t = α0 +
+5∑
t=−5

αtTreatmentBTC−USD ×Quartert + δi + ηj + γt + εt,

where TreatmentBTC−USD is one for BTC–USD cross-exchange return correlations and
zero otherwise (i.e., the treatment group), Quartert captures the timing of the futures
introduction (we use 2017Q3 as the benchmark), γt are quarterly time fixed effects, δi are
cryptocurrency exchange rate pair fixed effects (e.g., BTC–USD, BTC–EUR), and ηj are
exchange fixed effects. Pairwise correlations are computed at a monthly frequency using
three months of daily data. We compare correlations of BTC–USD to those of BTC–CCY,
where CCY refers to EUR, HKD, GBP, CAD, JPY, SGD, AUD, RUB, IDR. Standard errors
are clustered at the exchange pair level. In the figure, we report 95% confidence bounds.
The sample period is July 1, 2016 to December 31, 2018. The vertical line indicates the
day of the first BTC–USD futures introduction on December 10, 2017.
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Table 1: Bitcoin Trading Volumes

In this table, we report the quarterly time series of bitcoin trading activity. The sample period is July 1,
2016 to December 31, 2018. In Panel A, we illustrate the relative market shares (in %) of BTC trading
volume in terms of currencies (BTC–CCY), together with the aggregate BTC–CCY trading volume in units
of 1,000,000 BTC. In Panel B, we represent the market shares (in %) of BTC–USD trading volumes for the
5 largest exchanges in terms of aggregate BTC–USD trading volume during our sample period. The sixth
category “All Others” groups all remaining exchanges together. In Panel C, we represent the market shares
(in %) of BTC–EUR trading volumes for the 5 largest exchanges in terms of aggregate BTC–EUR trading
volume during our sample period.

Currency ’16Q3 ’16Q4 ’17Q1 ’17Q2 ’17Q3 ’17Q4 ’18Q1 ’18Q2 ’18Q3 ’18Q4
Panel A. BTC–CCY trading volume (market shares, %)
BTC-USD 37.16 32.36 41.45 63.15 69.37 59.22 59.36 55.04 52.89 56.78
BTC-JPY 53.57 58.55 44.55 21.94 18.04 24.61 29.55 36.82 39.83 35.61
BTC-EUR 5.08 6.04 8.19 12.64 10.35 7.75 9.17 7.05 6.23 6.59
BTC-IDR 2.74 1.16 1.75 0.08 0.07 2.09 0.09 0.00 0.00 0.00
BTC-SGD 0.99 0.94 2.03 0.37 0.31 1.47 0.53 0.16 0.08 0.11
BTC-HKD 0.00 0.05 0.41 0.63 0.65 2.35 0.08 0.01 0.01 0.02
BTC-AUD 0.01 0.15 0.94 0.04 0.36 1.76 0.41 0.04 0.04 0.01
BTC-RUB 0.21 0.36 0.27 0.32 0.18 0.23 0.27 0.49 0.43 0.30
BTC-CAD 0.15 0.27 0.30 0.54 0.43 0.27 0.30 0.21 0.24 0.19
BTC-GBP 0.10 0.11 0.12 0.29 0.23 0.24 0.24 0.18 0.25 0.40
BTC–CCY trading volume (1,000,000 BTC)
Volume 11.383 11.253 17.511 11.125 14.078 22.977 21.566 12.751 11.097 14.739

Exchanges ’16Q3 ’16Q4 ’17Q1 ’17Q2 ’17Q3 ’17Q4 ’18Q1 ’18Q2 ’18Q3 ’18Q4

Panel B. BTC–USD trading volume (market shares, %)
Bitfinex 23.31 20.53 30.52 14.54 28.85 37.89 40.9 38.84 38.73 27.86
Coinbase 11.22 12.01 10.27 16.56 12.41 14.7 14.75 12.58 12.91 13.52
Bitstamp 8.46 11.76 11.95 15.27 13.33 10.41 11.9 13.43 10.99 9.82
Gemini 2.74 5.49 4.52 10.29 10.35 6.09 5.88 4.49 4.25 4.85
HitBTC 0.05 0.06 0.01 0.11 1.52 4.04 4.12 9.3 15.77 23.06
All Others 54.22 50.15 42.73 43.23 33.54 26.87 22.45 21.36 17.35 20.89

Panel C. BTC–EUR trading volume (market shares, %)
Kraken 68.72 67.43 68.6 76.26 65.48 38.63 57.92 60.99 58.36 59.72
Bitstamp 5.88 7.48 6.21 11.68 13.37 18.34 18.89 16.03 18.41 17.98
Coinbase 5.34 6.19 5.49 8.44 10.37 19.74 18.66 16.49 16.05 15
Quoine 1.12 8.29 13.89 0.74 2.58 20.56 2.05 0.36 0.45 0.56
Cex.io 7.00 4.41 0.67 0.96 0.88 1.13 0.83 0.79 2.11 4.28
All Others 11.94 6.2 5.14 1.92 7.32 1.6 1.65 5.34 4.62 2.46
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Table 2: Summary Statistics for Cryptocurrency Returns

We provide summary statistics for daily bitcoin-fiat currency exchange rate log returns by currency pair and

exchange for BTC–USD (Panel A), BTC–EUR (Panel B), BTC–CCY excluding BTC–EUR, where CCY

refers to EUR, HKD, GBP, CAD, JPY, SGD, AUD, RUB, IDR (Panel C). In each panel, we report the

exchange’s name, the start and end dates of the data, the number of observations (N), and the average

(Mean), standard deviation (SD), skewness (Skew), kurtosis (Kurt), and the 5th and 95th percentiles (p5,

p95) of the return distributions. The sample period is July 1, 2016 to December 31, 2018.

Currency Exchange Start End N Mean SD Skew Kurt p5 p95

Panel A. BTC–USD (Daily)

BTC–USD Bitfinex 07/01/2016 12/31/2018 905 0.0018 0.0433 -0.1983 6.3730 -0.0713 0.0693
BTC–USD Bitstamp 07/01/2016 12/31/2018 913 0.0017 0.0426 -0.1508 6.4964 -0.0722 0.0650
BTC–USD Bittrex 07/01/2016 12/31/2018 899 0.0018 0.0460 -0.2577 5.8873 -0.0766 0.0727
BTC–USD BTCC 11/02/2016 09/05/2018 609 0.0039 0.0498 -0.3102 6.5016 -0.0836 0.0777
BTC–USD BTCe 07/01/2016 11/28/2018 793 0.0021 0.0374 -0.3427 7.0350 -0.0628 0.0563
BTC–USD Cex.io 07/01/2016 12/31/2018 914 0.0019 0.0412 -0.3334 7.5609 -0.0678 0.0671
BTC–USD Coinbase 07/01/2016 12/31/2018 914 0.0019 0.0425 -0.0427 6.4581 -0.0721 0.0665
BTC–USD Exmo 07/01/2016 12/31/2018 909 0.0021 0.0389 -0.3075 7.3961 -0.0640 0.0601
BTC–USD Gatecoin 08/22/2016 12/31/2018 789 0.0023 0.0471 -0.2080 5.8837 -0.0812 0.0739
BTC–USD Gemini 07/01/2016 12/31/2018 913 0.0019 0.0431 -0.0977 6.6002 -0.0711 0.0675
BTC–USD HitBTC 07/01/2016 12/31/2018 914 0.0019 0.0441 0.0557 7.2958 -0.0741 0.0675
BTC–USD itBit 07/01/2016 12/31/2018 914 0.0019 0.0425 -0.1277 6.4742 -0.0702 0.0653
BTC–USD Kraken 07/01/2016 12/31/2018 911 0.0018 0.0426 -0.1665 6.0843 -0.0711 0.0664
BTC–USD LakeBTC 07/01/2016 12/31/2018 786 0.0017 0.0423 -0.0142 7.0901 -0.0682 0.0666
BTC–USD Liquid 07/01/2016 12/31/2018 681 0.0017 0.0502 0.2502 8.8083 -0.0768 0.0800
BTC–USD OKCoin 07/01/2016 12/31/2018 790 0.0013 0.0391 -0.5371 6.9466 -0.0663 0.0609
BTC–USD Poloniex 07/01/2016 12/31/2018 894 0.0016 0.0436 -0.1580 6.4362 -0.0735 0.0701
BTC–USD QuadrigaCX 08/16/2016 12/31/2018 860 0.0022 0.0476 -0.0528 6.1302 -0.0785 0.0763
BTC–USD Quoine 07/01/2016 12/31/2018 914 0.0019 0.0456 0.1224 9.9324 -0.0743 0.0703

Panel B. BTC–EUR (Daily)

BTC–EUR Bitstamp 07/01/2016 12/31/2018 913 0.0017 0.0421 -0.2898 6.1981 -0.0728 0.0673
BTC–EUR BTCe 07/01/2016 11/26/2018 791 0.0021 0.0380 -0.1554 7.0665 -0.0660 0.0583
BTC–EUR Cex.io 07/01/2016 12/31/2018 914 0.0018 0.0405 -0.3008 6.6004 -0.0685 0.0629
BTC–EUR Coinbase 07/01/2016 12/31/2018 913 0.0018 0.0423 -0.2200 6.7720 -0.0713 0.0652
BTC–EUR Exmo 07/01/2016 12/31/2018 910 0.0020 0.0422 -0.5165 9.1056 -0.0675 0.0663
BTC–EUR Gatecoin 08/23/2016 12/31/2018 703 0.0026 0.0574 0.1394 7.2037 -0.0912 0.0885
BTC–EUR itBit 07/01/2016 12/31/2018 883 0.0020 0.0429 -0.3712 6.2388 -0.0752 0.0648
BTC–EUR Kraken 07/01/2016 12/31/2018 911 0.0016 0.0426 -0.2537 6.1465 -0.0726 0.069
BTC–EUR Quoine 07/01/2016 12/31/2018 805 0.0006 0.0510 -1.3671 21.8378 -0.0793 0.0733

Panel C. BTC–CCY excluding BTC–USD and BTC–EUR (Daily)

BTC–AUD Quoine 07/01/2016 12/31/2018 760 0.0017 0.0532 -0.1735 10.4065 -0.0861 0.0813
BTC–CAD Kraken 07/01/2016 12/31/2018 913 0.0018 0.0446 -0.5871 8.0918 -0.0733 0.0688
BTC–CAD QuadrigaCX 08/16/2016 12/31/2018 868 0.0023 0.0411 -0.2412 6.3111 -0.0673 0.0682
BTC–GBP Coinbase 07/01/2016 12/31/2018 913 0.0019 0.0423 -0.1112 6.4211 -0.0703 0.0669
BTC–GBP Kraken 07/01/2016 12/31/2018 849 0.0015 0.0655 -0.0323 11.2428 -0.0957 0.0886
BTC–HKD Gatecoin 08/22/2016 12/28/2018 776 0.0036 0.0651 1.4335 26.6648 -0.0896 0.0890
BTC–HKD Quoine 11/16/2016 12/31/2018 578 -0.0001 0.0563 -0.3501 8.5622 -0.1008 0.0804
BTC–IDR Quoine 07/01/2016 12/30/2018 688 0.0035 0.0541 0.3921 10.6577 -0.0928 0.0788
BTC–JPY bitFlyer 07/01/2016 12/31/2018 912 0.0021 0.0459 -0.0124 12.6350 -0.0719 0.0657
BTC–JPY BTCbox 07/01/2016 12/31/2018 912 0.0017 0.0462 -0.1386 14.0268 -0.0726 0.0626
BTC–JPY Kraken 07/01/2016 12/31/2018 911 0.0019 0.0469 0.0270 7.9342 -0.0781 0.0695
BTC–JPY Liquid 07/01/2016 12/31/2018 914 0.0019 0.0462 0.0462 12.3595 -0.0738 0.0677
BTC–JPY Quoine 07/01/2016 12/31/2018 914 0.0019 0.0462 0.0362 12.3907 -0.0738 0.0677
BTC–JPY Zaif 07/01/2016 12/31/2018 914 0.0019 0.0465 -0.0163 12.5598 -0.0704 0.0688
BTC–RUB Exmo 07/01/2016 12/31/2018 909 0.0022 0.0369 0.0129 8.0244 -0.0584 0.0566
BTC–RUB BTCe 09/16/2016 11/28/2018 716 0.0023 0.0363 -0.2006 6.5161 -0.0626 0.0584
BTC–SGD itBit 09/06/2016 12/31/2018 592 0.0024 0.0490 -0.4494 7.0476 -0.0875 0.0753
BTC–SGD Quoine 07/01/2016 12/31/2018 913 0.0019 0.0445 0.0362 10.2756 -0.0694 0.067539



Table 3: Summary Statistics for Market Characteristics.

We provide summary statistics (Mean, standard deviation, median, 5th and 95th percentiles), number of

observations, start and end dates for all market characteristics. For each metric, we provide statistics

independently for BTC–USD and for the 9 other BTC–fiat currency pairs (EUR, HKD, GBP, CAD, JPY,

SGD, AUD, RUB, IDR) across all exchanges. Our metrics, computed at a monthly frequency using daily

data over 3 months, relate to (1) price synchronicity: pairwise correlations ρ and integration κ; (2) market

efficiency D1; (3) market quality q; (4) liquidity: Roll, CHL, Amihud, and Volume (in units of 1,000 BTC).

Volume is measured at a daily frequency in this table whereas we use trading volume measured at a monthly

frequency in our regression analysis. The sample period is July 1, 2016 to December 31, 2018.

Measure Currency Start End N Mean SD Median p5 p95

ρ BTC-USD 07/31/2016 12/31/2018 4,890 0.8704 0.1686 0.9384 0.5200 0.9969
Other 07/31/2016 12/31/2018 1,658 0.8475 0.2401 0.9362 0.3424 0.9976

κ BTC-USD 07/31/2016 12/31/2018 4,890 0.7003 0.2206 0.7528 0.2500 0.9560
Other 07/31/2016 12/31/2018 1,670 0.6906 0.2455 0.7363 0.2771 0.9778

D1 BTC-USD 07/31/2016 12/31/2018 555 0.3069 0.2189 0.2808 0.0477 0.7426
Other 07/31/2016 12/31/2018 777 0.3305 0.2318 0.2984 0.0399 0.8146

q BTC-USD 07/31/2016 12/31/2018 557 0.9449 0.0760 0.9772 0.8081 1.0000
Other 07/31/2016 12/31/2018 795 0.9370 0.0811 0.9635 0.7805 1.0000

Roll BTC-USD 07/31/2016 12/31/2018 558 0.0163 0.0153 0.0139 0.0000 0.0437
Other 07/31/2016 12/31/2018 794 0.0197 0.0217 0.0165 0.0000 0.0570

CHL BTC-USD 07/31/2016 12/31/2018 558 0.0145 0.0064 0.0134 0.0057 0.0266
Other 07/31/2016 12/31/2018 802 0.0155 0.0089 0.0138 0.0057 0.0298

Amihud BTC-USD 07/31/2016 12/31/2018 558 691.07 8422.94 0.0198 0.0017 23.0785
Other 07/31/2016 12/31/2018 802 1410.07 22795.13 0.1490 0.0017 439.264

Volume BTC-USD 07/31/2016 12/31/2018 16,796 4.6215 9.7154 1.2211 0.0000 19.1523
Other 07/31/2016 12/31/2018 23,868 2.7346 6.6164 0.2062 0.0000 15.1631
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Table 4: Cryptocurrency Exchange Rate Return Correlations.

In this table, we provide pairwise cross-exchange Pearson correlation coefficients of BTC–USD daily log
returns for the five biggest exchanges in terms of aggregate BTC–USD trading volume between July 1,
2016 and December 31, 2016, the first 6 months of our sample period, which stretches from July 1, 2016 to
December 31, 2018. In Panel A (Panel B), we show pairwise correlation coefficients for the 12 months before
(after) the futures introduction from July 1, 2016 to June 30, 2017 (January 1, 2018 to December 31, 2018),
excluding an anticipation period of 6 months between July 1, 2017 and December 31, 2017.

Panel A: Exchange Rate Return Correlations, Jul 1, 2016 - Jun 30, 2017
Bitfinex Coinbase itBit Bitstamp Quoine

Bitfinex 1
Coinbase 0.9421 1
itBit 0.9437 0.9812 1
Bitstamp 0.9518 0.9736 0.9801 1
Quoine 0.8751 0.9009 0.9047 0.9079 1

Panel B: Exchange Rate Return Correlations, Jan 1, 2018 - Dec 31, 2018
Bitfinex Coinbase itBit Bitstamp Quoine

Bitfinex 1
Coinbase 0.9925 1
itBit 0.9929 0.9975 1
Bitstamp 0.9942 0.9984 0.9975 1
Quoine 0.9856 0.9875 0.9881 0.9885 1
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Table 5: Difference-in-Differences Results - Price Synchronicity/Correlations

In Panel A (Panel B) of this table, we report regression results from the projection of monthly pairwise

cross-exchange Pearson correlation coefficients (Kapadia and Pu (2012) price synchronicity measures) on the

treatment indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an

event indicator (Post) that takes the value one in the months following the introduction of bitcoin futures

on December 10, 2017; and their interaction (Treatment × Post). Pearson correlation coefficients and the

integration measures are computed at a monthly frequency in rolling windows using three months of daily

returns. We indicate whether the control group contains all bitcoin-fiat currency pairs (ALL), only BTC–

EUR (EUR), all currency pairs except BTC–EUR (CCY ∗), or the subset of exchanges that are not exposed

to volume manipulation (X-M). The sample period is July 1, 2016 to December 31, 2018, but we exclude

the anticipation period between July 1, 2017 and December 31, 2017. Standard errors are clustered at the

exchange pair level.

Panel A: Synchronicity ρ (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.053∗∗∗ -0.001 -0.054∗∗∗

(0.012) (0.011) (0.012)

Post -0.073∗∗∗ -0.054∗∗∗ -0.070∗∗∗

(0.020) (0.019) (0.019)

Treatment×Post 0.121∗∗∗ 0.110∗∗∗ 0.121∗∗∗ 0.119∗∗∗ 0.109∗∗∗ 0.050∗∗∗ 0.144∗∗∗ 0.050∗∗∗ 0.073∗∗∗

(0.019) (0.017) (0.019) (0.018) (0.017) (0.010) (0.022) (0.017) (0.018)

N 4310 4310 4310 4310 4310 1586 3906 3606 1056
adj. R2 0.030 0.370 0.081 0.054 0.437 0.812 0.440 0.456 0.510

Panel B: Integration κ (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.065∗∗∗ 0.001 -0.065∗∗∗

(0.020) (0.016) (0.020)

Post 0.020 0.045∗∗ 0.023
(0.020) (0.018) (0.019)

Treatment×Post 0.135∗∗∗ 0.121∗∗∗ 0.133∗∗∗ 0.132∗∗∗ 0.118∗∗∗ 0.047∗∗∗ 0.139∗∗∗ 0.080∗∗∗ 0.114∗∗∗

(0.019) (0.017) (0.019) (0.018) (0.016) (0.009) (0.020) (0.024) (0.026)

N 4310 4310 4310 4310 4310 1586 3906 3606 1056
adj. R2 0.104 0.549 0.173 0.135 0.662 0.863 0.657 0.683 0.709

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange-Pair FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X
Xchange-Pair×Month FE X
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Table 6: Difference-in-Differences Results - Market Quality and Price Efficiency

In Panel A (Panel B) of this table, we report regression results from the projection of monthly Hasbrouck

(1993) q market quality measures (Hou and Moskowitz (2005) D1 price efficiency measures) on the treat-

ment indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an

event indicator (Post) that takes the value one in the months following the introduction of bitcoin futures

on December 10, 2017; and their interaction (Treatment× Post). Market quality and price efficiency mea-

sures are computed at a monthly frequency in rolling windows using three months of daily returns. We

indicate whether the control group contains all bitcoin-fiat currency pairs (ALL), only BTC–EUR (EUR),

all currency pairs except BTC–EUR (CCY ∗), or the subset of exchanges that are not prone to trading

volume manipulation (X-M). The sample period is July 1, 2016 to December 31, 2018, but we exclude

the anticipation period between July 1, 2017 and December 31, 2017. Standard errors are clustered at the

exchange×currency level.

Panel A: Market quality q (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.011 -0.009 -0.011
(0.013) (0.012) (0.013)

Post -0.017∗∗ -0.013∗∗ -0.015∗∗

(0.007) (0.006) (0.007)

Treatment×Post 0.038∗∗∗ 0.037∗∗∗ 0.038∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.030∗∗ 0.052∗∗∗ 0.027∗∗ 0.015
(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.015) (0.012) (0.015)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.015 0.095 0.395 0.049 0.539 0.589 0.650 0.545 0.711

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X
Xchange×Month FE X

Panel B: Price efficiency D1 (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment 0.036 -0.003 0.046
(0.044) (0.025) (0.041)

Post 0.059∗∗ 0.048∗ 0.059∗∗

(0.022) (0.025) (0.022)

Treatment×Post -0.068∗∗ -0.061∗ -0.078∗∗ -0.068∗∗ -0.072∗∗ -0.035∗∗ -0.027∗∗∗

(0.033) (0.035) (0.030) (0.033) (0.031) (0.013) (0.004)

N 573 573 573 573 573 374 220
adj. R2 0.003 0.142 0.523 0.003 0.663 0.792 0.968

Control EUR EUR EUR EUR EUR EUR X-M
Xchange FE X X
Month FE X X
Ccy FE X X X X
Xchange×Month FE X X
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Table 7: Difference-in-Differences Results - Liquidity

In this table, we report regression results from the projection of the monthly liquidity factor λ on the

treatment indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an

event indicator (Post) that takes the value one in the months following the introduction of bitcoin futures

on December 10, 2017; and their interaction (Treatment × Post). We measure the liquidity factor λ as

described in Equation (11). We indicate whether the control group contains all bitcoin-fiat currency pairs

(ALL), only BTC–EUR (EUR), all currency pairs except BTC–EUR (CCY ∗), or the subset of exchanges

that are not prone to trading volume manipulation (X-M). The sample period is July 1, 2016 to December

31, 2018, but we exclude the anticipation period between July 1, 2017 and December 31, 2017. Standard

errors are clustered at the exchange×currency level.

Panel A: Liquidity λ (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.059 -0.180 -0.051
(0.185) (0.147) (0.184)

Post 0.497∗∗∗ 0.427∗∗∗ 0.469∗∗∗

(0.079) (0.054) (0.070)

Treatment×Post -0.379∗∗ -0.327∗∗ -0.382∗∗ -0.351∗∗ -0.347∗∗ -0.170∗∗ -0.322∗ -0.362∗∗ -0.378
(0.166) (0.154) (0.170) (0.163) (0.153) (0.080) (0.166) (0.159) (0.221)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.093 0.482 0.133 0.258 0.749 0.847 0.701 0.738 0.753

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange FE X
Month FE X X X X X
Ccy FE X
Xchange×Ccy FE X X X X X
Xchange×Month FE X
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Table 8: Difference-in-Differences Results - 4:00 p.m. Settlement Prices

In this table, we report difference-in-differences regression results when we measure prices at the futures

settlement times on the corresponding cash markets. Thus, prices are sampled daily at 4:00 p.m. London

time from itBit, Kraken, and Bitstamp, and at 4:00 p.m. Eastern time from Gemini. We regress different

measures on the treatment indicator (Treatment) that takes the value one for BTC–USD return pairs and

zero otherwise; an event indicator (Post) that takes the value one following the introduction of bitcoin

futures on December 10, 2017; and their interaction (Treatment × Post). In Panel A, we present results

for the Hasbrouck (1993) q market quality measure using rolling windows of three months. In Panel B, we

present results for the aggregate liquidity factor λ, described in Equation (11). In each panel, we present the

results using end-of-day prices, and 4:00 p.m. settlement prices. We present only the coefficient estimates for

the interaction term Treatment× Post. In Panels A and B, we present results for the comparison between

BTC–USD and BTC–CCY. The sample period is July 1, 2016 to December 31, 2018, but we exclude the

anticipation period between July 1, 2017 and December 31, 2017. We use heteroskedasticity robust errors

to estimate the standard errors.

(1) (2) (3) (4) (5) (6)
Panel A: Market quality q, BTC–USD vs. BTC–CCY

End-of-day prices Settlement prices
Treatment×Post -0.001 -0.003 -0.003 0.028∗ 0.023∗ 0.012

(0.016) (0.007) (0.007) (0.016) (0.012) (0.011)

N 232 232 210 232 232 210
adj. R2 0.037 0.788 0.739 0.045 0.423 0.440

Control ALL ALL ALL ALL ALL ALL
Xchange FE X X
Month FE X X
Ccy FE X X X X
Xchange×Month FE X X

Panel B: Liquidity λ, BTC–USD vs. BTC–CCY

End-of-day prices Settlement prices
Treatment×Post -0.288∗∗ -0.275∗∗∗ -0.216∗∗∗ -0.556∗∗∗ -0.519∗∗∗ -0.369∗∗∗

(0.139) (0.063) (0.064) (0.181) (0.108) (0.103)

N 232 232 210 232 232 210
adj. R2 0.363 0.857 0.844 0.296 0.723 0.691

Control ALL ALL ALL ALL ALL ALL
Month FE X X
Ccy FE
Xchange×Ccy FE X X X X
Xchange×Month FE X X
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Table 9: Difference-in-Differences Results - Liquidity and Attention Channels

In this table, we estimate Equation (12) to identify the effect of attention and liquidity on daily pairwise

cross-exchange Pearson correlation coefficients (Kapadia and Pu (2012) price synchronicity measures) in

Panels A and B (Panels C and D) after the introduction of bitcoin futures by using the same data as in

Table 5. High Attention is equal to 1 if the average Google search intensities for both exchanges are above

the median sample value in the pre-event period and 0 otherwise. High Liquidity is equal to 1 if the average

liquidity factors λ of both exchanges in the pre-event period are below the sample median and 0 otherwise.

Daily pairwise Pearson correlation coefficients and Kapadia and Pu (2012) price synchronicity measures

are computed in rolling windows with lags of three months. We only report results using all bitcoin-fiat

currency pairs. We report coefficient estimates for Treatment×Post and Treatment×Post×High Attention

(Treatment×Post×High Liquidity) in Panels A and C (Panels B and D). The sample period is July 1, 2016

to December 31, 2018, but we exclude the anticipation period between July 1, 2017 and December 31, 2017.

Standard errors are clustered at the exchange pair level.

Panel A: Synchronicity ρ (1) (2) (3) (4) (5) (6)

Treatment×Post 0.109∗∗∗ 0.093∗∗∗ 0.110∗∗∗ 0.105∗∗∗ 0.093∗∗∗ 0.045∗∗∗

(0.020) (0.017) (0.021) (0.019) (0.017) (0.013)

Treatment×Post×High Attention 0.059 0.069∗ 0.055 0.060 0.066 0.012
(0.044) (0.042) (0.044) (0.043) (0.041) (0.017)

N 4310 4310 4310 4310 4310 1586
adj. R2 0.039 0.376 0.089 0.061 0.444 0.813

Panel B: Synchronicity ρ (1) (2) (3) (4) (5) (6)

Treatment×Post 0.136∗∗∗ 0.127∗∗∗ 0.135∗∗∗ 0.135∗∗∗ 0.126∗∗∗ 0.051∗∗∗

(0.021) (0.020) (0.021) (0.020) (0.019) (0.010)

Treatment×Post×High Liquidity -0.130∗∗∗ -0.118∗∗∗ -0.127∗∗∗ -0.129∗∗∗ -0.120∗∗∗ -0.053∗∗∗

(0.022) (0.021) (0.022) (0.022) (0.021) (0.010)

N 4310 4310 4310 4310 4310 1586
adj. R2 0.086 0.373 0.136 0.099 0.441 0.813

Panel C: Integration κ (1) (2) (3) (4) (5) (6)

Treatment×Post 0.129∗∗∗ 0.107∗∗∗ 0.128∗∗∗ 0.123∗∗∗ 0.104∗∗∗ 0.044∗∗∗

(0.022) (0.018) (0.022) (0.021) (0.017) (0.011)

Treatment×Post×High Attention 0.038 0.052 0.037 0.040 0.051 0.001
(0.048) (0.045) (0.047) (0.046) (0.044) (0.017)

N 4310 4310 4310 4310 4310 1586
adj. R2 0.115 0.549 0.184 0.145 0.662 0.866

Panel D: Integration κ (1) (2) (3) (4) (5) (6)

Treatment×Post 0.149∗∗∗ 0.138∗∗∗ 0.146∗∗∗ 0.148∗∗∗ 0.135∗∗∗ 0.048∗∗∗

(0.021) (0.018) (0.020) (0.020) (0.018) (0.009)

Treatment×Post×High Liquidity -0.137∗∗∗ -0.119∗∗∗ -0.132∗∗∗ -0.135∗∗∗ -0.118∗∗∗ -0.041∗∗∗

(0.045) (0.044) (0.044) (0.044) (0.043) (0.009)

N 4310 4310 4310 4310 4310 1586
adj. R2 0.188 0.551 0.260 0.205 0.664 0.864

Control ALL ALL ALL ALL ALL ALL
Xchange-Pair FE X X
Month FE X X
Ccy FE X X X
Xchange-Pair×Month FE X
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Table 10: Difference-in-Differences Results - ETH pairs

In this table, we repeat the analysis of Table 5 with a different definition for the treatment and the control

groups. In columns (1)-(4), the treatment group is BTC–USD and the control group is ETH–USD. In

columns (5)-(8), the treatment group is ETH–USD and the control group consists of all ether-fiat currency

pairs except ETH–USD, i.e., ETH–CCY. Synchronicity and the integration measures are computed at a

monthly frequency in rolling windows using three months of daily returns. The sample period is July 1,

2016 to December 31, 2018, but we exclude the anticipation period between July 1, 2017 and December 31,

2017. Standard errors are clustered at the exchange pair level.

(1) (2) (3) (4) (5) (6) (7) (8)
BTC–USD vs ETH–USD ETH–USD vs ETH–CCY

Synchronicity ρ Integration κ Synchronicity ρ Integration κ

Treatment×Post 0.068∗∗∗ -0.006 0.062∗∗∗ -0.006 -0.088 0.003 -0.213 -0.107
(0.016) (0.007) (0.022) (0.014) (0.113) (0.035) (0.153) (0.036)

N 3778 1376 3778 1376 777 60 777 60
adj. R2 0.471 0.867 0.672 0.730 0.399 0.838 0.574 0.961

Xchange-Pair FE X X X X
Month FE X X X X
Ccy FE X X X X X X X X
Xchange-Pair×Month FE X X X X
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A Institutional Background

The Wall Street Journal refers to cryptocurrencies as “one of the most powerful innovations
in finance in 500 years” (Casey and Vigna, 2015). Regulators have struggled to adapt
existing laws in the areas of banking and securities regulation, and central banks around
the world (e.g., Bank of England, Bank of Canada, U.S. Federal Reserve, Bank of China)
are exploring issuance of their own cryptocurrencies. The distributed ledger technology
underlying cryptocurrencies has many other potential applications in diverse areas such as
property registration, accounting and auditing, and financial derivatives. On January 9,
2017, the Wall Street Journal announced joint efforts by IBM and the Depository Trust &
Clearing Corp., the New York-based utility that settles and clears all stock and bond trades
in the U.S., to clear all credit derivatives clearing through blockchain technology (Demos,
Jan. 9, 2017). These developments underscore the rapid transformation of the market
for financial derivatives. In this section, we first provide some background information on
blockchains, and second about cryptocurrencies.

A.1 Blockchains

Blockchain constitutes an electronic ledger that records entries in discrete chunks referenced
as blocks. The blocks possess a specific order such that they form a chain, which in turn
motivates the “blockchain” name.

Blockchain dates back to Haber and Stornetta (1991), but rose to mainstream prominence
only after Nakamoto (2008) employed the data structure as the underlying technology be-
hind Bitcoin. In his seminal white paper, Nakamoto (2008) argues that Bitcoin provides
“a system for electronic transactions without relying on trust.” The associated argument
relies not only upon the blockchain data structure but also upon the usage of several other
extant computer science concepts.*

Bitcoin was created as the first permissionless blockchain. The term “permissionless” arises
from the fact that agents do not need special permission to update Bitcoin’s ledger; rather,
Bitcoin employs a protocol, known as Proof-of-Work (PoW), that theoretically allows any
agent to update the ledger. PoW, introduced by Dwork and Naor (1992) and named by
Jakobsson and Juels (1999), requires that agents solve a difficult but easily verifiable puzzle
to earn the authority to update the ledger. Nakamoto (2008) argues that PoW enables
Bitcoin to overcome the need for a trusted intermediary.

The Bitcoin blockchain possesses a native currency known as bitcoin. This native currency
facilitates payments among users. Moreover, newly issued bitcoins accrue exclusively to
those updating the ledger and thereby provide an economic incentive for an agent to update
the ledger.

*For a more detailed historical context, the interested reader may consult Narayanan and Clark (2017).
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Bitcoin’s model has been imitated numerous times, leading to a profusion of cryptocurren-
cies (Irresberger, John, and Saleh, 2019). In recent years, though, prominent blockchain
platforms have opted for a different structure than Bitcoin. Ethereum, for example, fea-
tures a rich scripting language that facilitates operations beyond payments. EOS.IO, akin
to Ethereum, facilitates operations beyond payments, but deviates from both Bitcoin and
Ethereum by replacing PoW with PoS (Saleh, 2021).

The rich functionality of platforms such as Ethereum and EOS.IO allows for decentralized
applications that themselves feature native tokens, which are typically classified as cryp-
tocurrencies. Currently, there exist more than 5,000 cryptocurrencies (CoinMarketCap,
2021), with the majority not operating on an independent blockchain. Among cryptocur-
rencies operating on their own blockchains, almost all operate with either PoW or PoS
protocols.

For completeness, we note that blockchain does not require a cryptocurrency. Such blockchains
exist in industry settings and extend beyond the scope of this study.

A.2 Cryptocurrencies

We define a cryptocurrency as any digital asset that settles on a distributed ledger. Our
definition is standard, but involves an abuse of language, as we explain below.

Digital currency dates back to Chaum (1982), but bitcoin, a currency operating on a
blockchain, was launched as the first cryptocurrency in 2009. Many cryptocurrencies, with
only slight differences from bitcoin, started trading in subsequent years. For example, lite-
coin, released in 2011, operates on a blockchain that allows for blocks to be created more
quickly than for Bitcoin. As another example, PPCoin, released in 2012, operates on a
blockchain that employs both PoS and PoW as part of the ledger updating process. Like
bitcoin, the cryptocurrencies that emerged after bitcoin’s introduction serve as mediums for
payment processing and operate on a blockchain.

The term cryptocurrency took on a broader meaning with the birth of Ethereum in 2015.
Ethereum, a blockchain with the ability to initiate and execute smart contracts, possesses
a native asset known as ether. Ether, like bitcoin, constitutes a digital asset that settles
on a blockchain. However, ether is not a currency in the sense that its primary usage
is not intended for payments. Accordingly, the inclusion of ether (and related assets) as
a cryptocurrency constitutes a standard abuse of language. Since Ethereum’s birth, sev-
eral other smart contract blockchains have arisen with native assets that, like ether, are
cryptocurrencies by our definition.

A smart contract blockchain enables the execution of an Initial Coin Offering (ICO) which
involves the sale of a newly created asset, typically referenced as a token, that also con-
stitutes a cryptocurrency. Prominent examples of tokens include the basic attention token
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and binance coin. A token typically settles on the smart contract blockchain on which the
associated ICO was conducted, but some tokens migrate away. Currently, tokens constitute
the majority of cryptocurrencies. For more detail regarding ICOs, the interested reader
may consult Lee, Li, and Shin (2018).

Due to the ease of launching a blockchain, and, thus, a cryptocurrency, a precise account
of the number of cryptocurrencies in circulation is difficult to obtain. Nonetheless, Irres-
berger, John, and Saleh (2019) document 907 cryptocurrencies that possess market capitals
exceeding 1 million USD. Collectively, those cryptocurrencies possess a market capital of
approximately 200 billion USD. Nonetheless, few cryptocurrencies account for the bulk of
that market capitalization. Bitcoin is especially dominant and consistently accounts for the
largest market capitalization among all cryptocurrencies.

Cryptocurrencies trade frequently and on a variety of exchanges. The total number of
exchanges varies over time, largely because of exchange failures and hacks that lead to a
suspension of trading (e.g., Mt. Gox in 2014). A given currency pair (e.g., BTC–USD)
may thus trade on several different exchanges. As the BTC–USD is the same asset in spite
of being exchanged in multiple trading venues (i.e., it is fully fungible), prices ought to be
the same. Nonetheless, prices of a given currency pair may differ across exchanges due to
exchange-specific risks and frictions.
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B Data Appendix

B.1 Main Sample

In our analysis we combine data from two sources: Kaiko and CryptoCompare. Kaiko
is a commercial data vendor used in several recent academic studies (e.g., Makarov and
Schoar, 2020; Li, Shin, and Wang, 2018). Kaiko provides price and trade information for
transactions, timestamped to the millisecond, for more than 80 different exchanges on which
bitcoin trades against other fiat currencies. For each transaction, the data include ticker
symbol (e.g., BTC–USD), execution price, trade quantity, time stamp, and an indicator
that flags trades as buyer- or seller-initiated. CryptoCompare provides similar data and is
publicly available. The data can be sourced manually from CryptoCompare’s public data
feeds.

Data availability does not always overlap between the two data sources. For those periods
when they do overlap, we check the consistency in prices across Kaiko and CryptoCompare,
and find that prices are identical. When data for a particular exchange are available in both
Kaiko and CryptoCompare, we choose the time series that has more observations, except
for Bittrex (USD). The reason is that data for Bittrex (USD) provided by Kaiko starts only
after August 24, 2016 and CrytpoCompare has observations before that date. Thus, we
combine the data from two databases for Bittrex (USD).

In our analysis of BTC, we exclude exchanges that have observations starting after January
1, 2017 and that do not have observations for more than three months in the post-event
period. In addition, we exclude exchanges with average monthly volume below 1,000 BTCs
in the anticipation period. In a similar vein, we exclude currency-exchange pairs that have
observations on fewer than 50% of all days in our sample, corresponding to a cut-off level of
457 daily observations. For the computation of cryptocurrency characteristics, we require a
minimum of 45 observations within a 3-month period to ensure sufficient statistical precision
of the estimates. This criterion does not apply for the measurement of volume, which is not
subject to estimation error. Similarly, in the robustness tests where we use other estimation
windows, we require more than 50% of available data points in the estimation window.

These data cleaning procedures lead to a benchmark sample with 10 bitcoin-fiat currency
exchange rate pairs traded on 22 exchanges, with a total of 46 bitcoin-fiat currency-exchange
pairs. In addition to the treatment currency BTC–USD, our control group includes 9 ex-
change rate pairs: BTC–EUR, BTC–GBP, BTC–HKD, BTC–SGD, BTC–JPY, BTC–AUD,
BTC–IDR, BTC–CAD, and BTC–RUB, traded on the following 22 exchanges: Bitfinex,
bitFlyer, Bitstamp, Bittrex, BTCbox, BTCC, BTC–e, Cex.io, Coinbase, Exmo, Gate-
coin, Gemini, HitBTC, itBit, Kraken, LakeBTC, Liquid, OKCoin, Poloniex, QuadrigaCX,
Quoine, and Zaif.

Among the 46 currency-exchange pairs, the following are from the Kaiko database: Bitstamp
(EUR, USD), Coinbase (EUR, GBP, USD), itBit (EUR, SGD, USD), Kraken (CAD, EUR,

6



GBP, JPY, USD), Quoine (AUD, EUR, HKD, IDR, JPY, SGD, USD), BTCe (EUR, USD,
RUB), Bitfinex (USD), Gemini (USD), OKCoin (USD), Poloniex (USD), bitFlyer (JPY),
BTCBox (JPY), and Zaif (JPY).

Among the 46 currency-exchange pairs, the following are from the CryptoCompare database:
Gatecoin (EUR, HKD, USD) Cex.io (EUR, USD), Exmo (EUR, RUB, USD), QuadrigaCX
(CAD, USD), HitBTC (USD), BTCC (USD), LakeBTC (USD), and Liquid (USD,JPY).

In our analysis of ETH, we apply the same data cleaning procedure to construct the sample
for ETH currency-exchange pairs. We identify 6 bitcoin-fiat currency exchange rate pairs
traded on 11 centralized exchanges, with a total of 18 bitcoin-fiat currency-exchange pairs.
Exchange rates are BTC–USD, BTC–JPY, BTC–EUR, BTC–GBP, BTC–CAD, and BTC–
RUB. The following exchanges are from the Kaiko database: BTCe (USD, RUB), Bitfinex
(USD), Coinbase (USD), Gemini (USD), Poloniex (USD), and Quoine (USD, JPY). The
following exchanges are from the CryptoCompare database: Kraken (USD, EUR, GBP,
JPY, CAD), Cex.io (USD), Exmo (USD, RUB), Gatecoin (EUR), and QuadrigaCX(CAD).

We clean all price observations based on the magnitude of log returns. In particular, we
delete daily returns if it is greater than 200% (in absolute value) based on either the daily
low, high, or closing price. As a result, 20 daily returns were excluded from BTC and 4
daily observations are eliminated from the ETH price series. In addition, we identify one
negative price entry in CryptoCompare (Quoine, BTC–USD), which we also exclude from
the data. Unusual volume data (more than 5,000,000 BTC traded within one hour) are
eliminated in the CryptoCompare data. There were 3 such observations.

We provide a tabular overview of the data cleaning process in Table C.1.

B.2 Sample for Ethereum Futures Introduction

The CME filed an announcement on December 15, 2020 that it plans to introduce trading
of ethereum (ETH) futures on February 8, 2021. As for the introduction of bitcoin futures,
the CME selectively launched contracts on ETH against the USD, but not against other
fiat exchange rates. We extend our analysis to consider the impact of the introduction of
ETH futures on the ETH cash market.

Our starting point is the 55 exchanges on which ETH traded between February 1, 2020
and April 30, 2021. We exclude 18 exchanges for which the market share (ETH trading
volume relative to aggregate ETH trading volume during the period between February 1,
2020 and January 31, 2021) is below 0.01%. This reduces the sample to 36 exchanges.
Our sample includes 6 bitcoin-fiat currency pairs: BTC–AUD, BTC–EUR, BTC–HKD,
BTC–JPY, BTC–RUB, and BTC–USD.

CoinMarketCap, a leading firm for cryptocurrency price and market data, ranks and scores
exchanges based on their web traffic, their average liquidity, and on their confidence that the
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volume reported by an exchange is legitimate. Weights are assigned to the above-mentioned
factors and a score from 0.0 to 10.0 is given to each exchange.� We flag 12 exchanges as being
potentially subject to market manipulation. That includes 3 exchanges that are not covered
by CoinMarketCap; 4 exchanges that are covered by CoinMarketCap but that do not have
an exchange score; 5 exchanges that are covered by CoinMarketCap with an exchange score
below 4.0/10. We use the cutoff score of 4.0 as it coincides with the cutoff level for the
lowest category imposed by CoinMarketCap.

We estimate our measures of price synchronicity (ρ) and price integration following Kapadia
and Pu (2012) using a rolling window of one month of daily data. To ensure sufficient
statistical precision in the estimation of our measures, we require a minimum of 15 daily
return observations within each month.

�Details are provided at the web address https://support.coinmarketcap.com/hc/en-
us/articles/360052030111-Exchange-Ranking.
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Table C.1: Data Cleaning Process

In this table, we describe the data sampling and cleaning process. We source all data from Kaiko and CryptoCompare. In

Panel A, we focus on BTC against fiat exchange rate pairs. In Panel B, we focus on ETH against fiat exchange rate pairs.

At each decision step, we indicate the number of exchanges (Exch), the number of cryptocurrency pairs (Curr), the number of

exchange-currency pairs (Exch − Curr), and the number of daily price observations (Obs). A detailed description of the data

cleaning process is provided in Appendix B. Note that data for the Bittrex exchange come from both data sources. For this ex-

change the number of observations taken from CryptoCompare is 50 and the number of observations taken from Kaiko is 849.

Panel A: BTC

Kaiko CryptoCompare
Exch Curr Exch-Curr Obs Exch Curr Exch-Curr Obs

Original sample 17 10 36 28,741 36 10 123 54,592
Start before January 1, 2017 16 10 35 28,310 20 10 74 38,596
Mean volume in anticip. period >1,000BTC 16 10 33 26,835 18 10 39 31,946
Returns <200% (in absolute terms) 16 10 33 26,824 18 10 39 31,943
Positive prices 16 10 33 26,823 18 10 39 31,943
Volume <5,000,000BTC 16 10 33 26,823 18 10 39 31,940
Longest time series between 2 sources 13 10 30 25,362 8 6 15 12,456

Panel B: ETH

Kaiko CryptoCompare
Exch Curr Exch-Curr Obs Exch Curr Exch-Curr Obs

Original sample 11 10 26 16,197 26 10 81 27,554
Start before January 1, 2017 8 7 15 9,865 8 7 15 10,021
More than 450 observations 6 6 12 8,534 6 6 12 8,832
Returns <200% (in absolute terms) 6 6 12 8,533 6 6 12 8,831
Longest time series between 2 sources 6 4 8 6,282 5 6 10 7,592
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Table C.2: Monthly Frequency – Alternative Rolling Windows.

In this table, we report regression results from the projection of market characteristics on the treatment

indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an event

indicator (Post) that takes the value one in the months following the introduction of bitcoin futures on

December 10, 2017; and their interaction (Treatment × Post). Panel A is based on the specification in

column (5) of Tables 5, 6, and 7 in the paper. Panel B is based on the specification in column (6) of Tables

5, 6, and 7. All metrics are computed at a monthly frequency using rolling windows of one month of daily

returns. We indicate whether the control group contains all bitcoin-fiat currency pairs (ALL), or only BTC–

EUR (EUR). The sample period is July 1, 2016 to December 31, 2018, but we exclude the anticipation

period between July 1, 2017 and December 31, 2017. Standard errors are clustered at the exchange pair level

for price synchronicity and price integration, and at the exchange×currency level for all other measures.

Panel A (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.083∗∗∗ 0.108∗∗∗ 0.028∗∗∗ -0.050∗∗ -0.293∗∗ -0.005∗∗∗ -0.002∗ 1.152∗ -1.479∗

(0.014) (0.015) (0.009) (0.023) (0.132) (0.002) (0.001) (0.635) (0.756)

N 4745 4745 1011 630 1011 1011 1011 1061 1011
adj. R2 0.379 0.558 0.626 0.705 0.687 0.527 0.672 0.704 0.713

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL
Ccy FE X X X X
Month FE X X X X X X X X X
Xchange (or-Pair) FE X X X X
Xchange (or-Pair)×Ccy FE X X X X X

Panel B (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.016∗∗ 0.039∗∗∗ 0.022∗∗∗ -0.025∗∗∗ -0.133∗ -0.004∗∗ -0.001 0.614 -0.598∗

(0.007) (0.009) (0.008) (0.008) (0.068) (0.002) (0.001) (0.412) (0.343)

N 1741 1741 753 408 753 753 753 801 753
adj. R2 0.692 0.727 0.650 0.834 0.780 0.553 0.712 0.819 0.840

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL
Ccy FE X X X X
Xchange (or-Pair)×Ccy FE X X X X X
Xchange (or-Pair)×Month FE X X X X X X X X X
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Table C.3: Daily Frequency – 30 and 90 Day Rolling Windows

In this table, we report regression results from the projection of market characteristics on the treatment

indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an event

indicator (Post) that takes the value one in the months following the introduction of bitcoin futures on

December 10, 2017; and their interaction (Treatment×Post). All metrics are computed at a daily frequency

using rolling windows of 30 days (90 days) in Panels A and C (B and D). Panels A and B (C and D) are

based on the specification in column (5) (column (6)) of Tables 5, 6, and 7 in the paper. We indicate whether

the control group contains all bitcoin-fiat currency pairs (ALL), or only BTC–EUR (EUR). The sample

period is July 1, 2016 to December 31, 2018, but we exclude the anticipation period between July 1, 2017

and December 31, 2017. Standard errors are clustered at the exchange pair level for price synchronicity and

price integration, and at the exchange×currency level for all other measures.

Panel A. 30 day horizon (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.092∗∗∗ 0.115∗∗∗ 0.031∗∗∗ -0.048∗∗ -0.305∗∗ -0.006∗∗∗ -0.002∗ 1.175∗ -1.499∗

(0.013) (0.015) (0.009) (0.019) (0.134) (0.002) (0.001) (0.659) (0.772)

N 141347 141347 30023 18680 30023 30023 30023 31495 30023
adj. R2 0.449 0.572 0.494 0.775 0.721 0.582 0.692 0.721 0.735

Panel B. 90 day horizon (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.102∗∗∗ 0.120∗∗∗ 0.038∗∗∗ -0.073∗∗ -0.360∗∗ -0.007∗∗∗ -0.002∗ 1.239∗ -1.624∗

(0.015) (0.015) (0.012) (0.026) (0.156) (0.002) (0.001) (0.693) (0.876)

N 127286 127286 27209 17010 27209 27209 27209 29422 27209
adj. R2 0.477 0.686 0.498 0.764 0.767 0.580 0.768 0.727 0.754

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL
Day FE X X X X X X X X X
Ccy FE X X X X
Xchange (or-Pair) FE X X X X
Xchange (or-Pair)×Ccy FE X X X X X

Panel C. 30 day horizon (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.025∗∗∗ 0.045∗∗∗ 0.022∗∗∗ -0.029∗∗∗ -0.141∗∗ -0.005∗∗∗ -0.001 0.573 -0.589∗

(0.007) (0.009) (0.006) (0.006) (0.059) (0.002) (0.000) (0.354) (0.298)

N 51494 51494 30022 18679 30022 30022 30022 31495 30022
adj. R2 0.708 0.716 0.370 0.742 0.855 0.504 0.749 0.903 0.918

Panel D. 90 day horizon (1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.042∗∗∗ 0.047∗∗∗ 0.031∗∗∗ -0.041∗∗∗ -0.170∗∗ -0.006∗∗ -0.001 0.627 -0.637∗

(0.010) (0.009) (0.010) (0.009) (0.069) (0.002) (0.000) (0.408) (0.337)

N 46726 46726 27209 17010 27209 27209 27209 29422 27209
adj. R2 0.814 0.847 0.607 0.849 0.914 0.710 0.877 0.900 0.925

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL
Ccy FE X X X X
Xchange (or-Pair)×Ccy FE X X X X X
Xchange (or-Pair)×Day FE X X X X X X X X X
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Table C.4: Alternative Trading Horizon for Price Integration

In Panel A of this table, we report regression results from the projection of monthly pairwise cross-exchange

Kapadia and Pu (2012) price synchronicity measures, with a trading horizon of τ =5 days, on the treatment

indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an event

indicator (Post) that takes the value one in the months following the introduction of bitcoin futures on

December 10, 2017; and their interaction (Treatment × Post). Pearson correlation coefficients and the

integration measures are computed at a monthly frequency in rolling windows using three months of daily

returns. We indicate whether the control group contains all bitcoin-fiat currency pairs (ALL), only BTC–

EUR (EUR), all currency pairs except BTC–EUR (CCY ), or the subset of exchanges that are not prone

to trading volume manipulation (X-M). The sample period is July 1, 2016 to December 31, 2018, but we

exclude the anticipation period between July 1, 2017 and December 31, 2017. Standard errors are clustered

at the exchange pair level.

Panel A: Integration κ (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.063∗∗∗ -0.040∗∗∗ -0.061∗∗∗

(0.010) (0.010) (0.010)

Post -0.037∗∗∗ -0.026∗∗ -0.035∗∗∗

(0.013) (0.012) (0.013)

Treatment×Post 0.083∗∗∗ 0.079∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.075∗∗∗ 0.043∗∗∗ 0.076∗∗∗ 0.074∗∗∗ 0.068∗∗∗

(0.013) (0.012) (0.012) (0.012) (0.011) (0.010) (0.014) (0.013) (0.019)

N 4310 4310 4310 4310 4310 1586 3906 3606 1056
adj. R2 0.031 0.282 0.181 0.056 0.477 0.826 0.462 0.482 0.666

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange-Pair FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X
Xchange-Pair×Month FE X
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Table C.5: Alternative Sample Periods

In this table, we verify the robustness of our results to alternative sample periods. In columns (1) and (5),

we exclude the observations in the anticipation period, as well as in January and February in 2018 because

the 3-month horizon to compute our measures of market characteristics for these months includes data from

the anticipation period. In columns (2) and (6), we only exclude the observations in the anticipation period.

In columns (3) and (7), we exclude the observations from January and February 2018. Finally, in columns

(4) and (8), we do not exclude any observations. In each panel of this table, we report regression results

from the projection of various measures on the treatment indicator (Treatment) that takes the value one for

BTC–USD return pairs and zero otherwise; an event indicator (Post) that takes the value one in the months

following the introduction of bitcoin futures on December 10, 2017; and their interaction (Treatment×Post).
All measures are computed at a monthly frequency in rolling windows using three months of daily returns.

We use all bitcoin-fiat currency pairs as the control group except for D1. For D1, we define the control group

that contains only BTC-EUR. Standard errors are clustered at the exchange pair level for price synchronicity

(ρ) and price integration following Kapadia and Pu (2012) whereas the standard errors are clustered at the

exchange × currency level for the other measures.

Pre-Event 07/16- 07/16- 07/16- 07/16- 07/16- 07/16- 07/16- 07/16-
06/17 06/17 12/17 12/17 06/17 06/17 12/17 12/17

Post-Event 03/18- 01/18- 03/18- 01/18- 03/18- 01/18- 03/18- 01/18-
12/18 12/18 12/18 12/18 12/18 12/18 12/18 12/18

Panel A: Synchronicity ρ (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 0.109∗∗∗ 0.103∗∗∗ 0.098∗∗∗ 0.092∗∗∗ 0.050∗∗∗ 0.045∗∗∗ 0.047∗∗∗ 0.043∗∗∗

(0.017) (0.015) (0.015) (0.013) (0.010) (0.008) (0.008) (0.007)

N 4310 4728 5535 5953 1586 1752 2000 2166
adj. R2 0.437 0.428 0.439 0.432 0.812 0.799 0.808 0.796

Panel B: Integration κ (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 0.118∗∗∗ 0.107∗∗∗ 0.104∗∗∗ 0.094∗∗∗ 0.047∗∗∗ 0.040∗∗∗ 0.045∗∗∗ 0.039∗∗∗

(0.016) (0.015) (0.014) (0.013) (0.009) (0.009) (0.008) (0.008)

N 4310 4728 5535 5953 1586 1752 2000 2166
adj. R2 0.662 0.658 0.647 0.645 0.863 0.857 0.846 0.840

Panel C: Market quality q (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 0.036∗∗∗ 0.034∗∗∗ 0.032∗∗∗ 0.030∗∗∗ 0.030∗∗ 0.028∗∗ 0.028∗∗∗ 0.026∗∗∗

(0.012) (0.011) (0.009) (0.009) (0.012) (0.011) (0.009) (0.009)

N 920 1010 1177 1267 683 753 876 946
adj. R2 0.539 0.538 0.476 0.481 0.589 0.590 0.567 0.567

Panel D: Market efficiency D1 (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post -0.072∗∗ -0.068∗∗ -0.055∗∗ -0.053∗∗ -0.035∗∗ -0.029∗∗ -0.026∗ -0.021∗

(0.031) (0.029) (0.024) (0.022) (0.013) (0.012) (0.013) (0.012)

N 573 627 731 785 374 410 472 508
adj. R2 0.663 0.669 0.734 0.730 0.792 0.797 0.830 0.829

Control ALL ALL ALL ALL ALL ALL ALL ALL
Xchange (or-Pair) FE X X X X
Month FE X X X X
Ccy FE X X X X X X X X
Xchange (or-Pair)×Month FE X X X X
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Pre-Event 07/16- 07/16- 07/16- 07/16- 07/16- 07/16- 07/16- 07/16-
06/17 06/17 12/17 12/17 06/17 06/17 12/17 12/17

Post-Event 03/18- 01/18- 03/18- 01/18- 03/18- 01/18- 03/18- 01/18-
12/18 12/18 12/18 12/18 12/18 12/18 12/18 12/18

Panel E: Liquidity λ (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post -0.347∗∗ -0.364∗∗ -0.299∗∗ -0.306∗∗ -0.170∗∗ -0.176∗∗ -0.177∗∗ -0.179∗∗

(0.153) (0.156) (0.132) (0.135) (0.080) (0.086) (0.080) (0.084)

N 920 1010 1177 1267 683 753 876 946
adj. R2 0.749 0.728 0.667 0.663 0.847 0.808 0.787 0.764

Panel F: Roll (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post -0.006∗∗ -0.007∗∗ -0.006∗∗ -0.006∗∗ -0.005∗ -0.005∗ -0.005∗∗ -0.005∗∗

(0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.003) (0.002)

N 920 1010 1177 1267 683 753 876 946
adj. R2 0.525 0.506 0.477 0.475 0.602 0.580 0.573 0.562

Panel G: CHL (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post -0.002∗∗ -0.002∗∗ -0.002∗∗ -0.002∗∗ -0.001 -0.001∗ -0.001∗∗ -0.001∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

N 920 1010 1177 1267 683 753 876 946
adj. R2 0.757 0.800 0.731 0.770 0.807 0.840 0.783 0.813

Panel H: log(Volume) (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 1.270∗ 1.199∗ 0.884 0.823 0.722 0.693 0.599 0.575
(0.687) (0.663) (0.533) (0.511) (0.495) (0.474) (0.403) (0.381)

N 992 1083 1268 1359 750 820 960 1030
adj. R2 0.705 0.705 0.669 0.675 0.808 0.809 0.811 0.814

Panel I: log(Amihud) (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post -1.597∗ -1.568∗ -1.166∗ -1.111 -0.680∗ -0.565 -0.602∗ -0.487∗

(0.853) (0.850) (0.686) (0.676) (0.374) (0.349) (0.307) (0.260)

N 920 1010 1177 1267 683 753 876 946
adj. R2 0.741 0.732 0.688 0.689 0.850 0.838 0.839 0.833

Control ALL ALL ALL ALL ALL ALL ALL ALL
Month FE X X X X
Xchange (or-Pair)×Ccy FE X X X X X X X X
Xchange (or-Pair)×Month FE X X X X
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Table C.6: Placebo tests

In this table, we verify the robustness of our results to placebo event studies. We consider hypothetical

announcement dates on January 1, 2017 in Panel A and July 1, 2018 in Panel B. Results in both panels yse

three months of data before and after the hypothetical announcement dates. In each panel of this table, we

report regression results from the projection of various measures on the treatment indicator (Treatment)

that takes the value one for BTC–USD return pairs and zero otherwise; an event indicator (Post) that takes

the value one in the months following the introduction of bitcoin futures on December 10, 2017; and their

interaction (Treatment × Post). All measures are computed at a monthly frequency in rolling windows

using three months of daily returns. We use all bitcoin-fiat currency pairs as the control group except for

D1. For D1, we define the control group that contains only BTC-EUR. Standard errors are clustered at

the exchange pair level for price synchronicity (ρ) and price integration following Kapadia and Pu (2012)

whereas the standard errors are clustered at the exchange × currency level for the other measures.

Panel A – January 2017 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ρ κ q D1 Volatility λ Roll CHL Volume Amihud

Treatment×Post 0.011 0.011 0.011 0.044 -0.009 0.027 0.001 0.001 -0.159 0.375
(0.012) (0.016) (0.017) (0.052) (0.019) (0.119) (0.003) (0.001) (0.244) (0.334)

N 1100 1100 249 249 249 249 249 249 269 249
adj. R2 0.798 0.821 0.642 0.678 0.839 0.793 0.502 0.713 0.858 0.823

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL ALL
Ccy FE X X X X X
Month FE X X X X X X X X X X
Xchange (or-Pair) FE X X X X X
Xchange (or-Pair)×Ccy FE X X X X X

Panel B – July 2018 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ρ κ q D1 Volatility λ Roll CHL Volume Amihud

Treatment×Post -0.027 -0.026 0.010 -0.008 0.015 0.006 -0.004 0.001 0.031 -0.045
(0.021) (0.017) (0.013) (0.028) (0.029) (0.131) (0.004) (0.001) (0.207) (0.365)

N 1301 1301 260 260 260 260 260 260 275 260
adj. R2 0.585 0.799 0.613 0.479 0.847 0.711 0.611 0.638 0.746 0.846

Control ALL ALL ALL EUR ALL ALL ALL ALL ALL ALL
Ccy FE X X X X X
Month FE X X X X X X X X X X
Xchange (or-Pair) FE X X X X X
Xchange (or-Pair)×Ccy FE X X X X X
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Table C.7: Alternative Standard Error Corrections

In each table of this table, we show that our results are robust to different methods of clustering. In

columns (1) and (6), we report OLS standard errors; in columns (2) and (7), we report heteroskedasticity-

robust standard errors; in columns (3) and (8), standard errors are clustered at exchange pair level for price

synchronicity and price integration, and clustered at the exchange × currency level for the other measures;

in columns (4) and (9), standard errors are clustered at the month level for all measures; in columns (5) and

(10), standard errors are two-way clustered at exchange pair and month level for price synchronicity and

price integration, and two-way clustered at exchange × currency and month level for all other measures. In

all panels, we report regression results from the projection of various measures on the treatment indicator

(Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an event indicator

(Post) that takes the value one in the months following the introduction of bitcoin futures on December

10, 2017; and their interaction (Treatment× Post). All measures are computed at a monthly frequency in

rolling windows using three months of daily returns. We use all bitcoin-fiat currency pairs as the control

group except for D1. For D1, we define the control group that constains only BTC-EUR.

Panel A: Synchronicity ρ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post 0.109∗∗∗ 0.109∗∗∗ 0.109∗∗∗ 0.109∗∗∗ 0.109∗∗∗ 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗ 0.050∗∗

(0.008) (0.009) (0.017) (0.018) (0.023) (0.008) (0.007) (0.010) (0.021) (0.022)

N 4310 4310 4310 4310 4310 1586 1586 1586 1586 1586
adj. R2 0.437 0.437 0.437 0.437 0.437 0.813 0.813 0.812 0.812 0.812

Panel B: Integration κ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post 0.118∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗

(0.008) (0.009) (0.016) (0.008) (0.017) (0.007) (0.007) (0.009) (0.011) (0.012)

N 4310 4310 4310 4310 4310 1586 1586 1586 1586 1586
adj. R2 0.662 0.662 0.662 0.662 0.662 0.863 0.863 0.863 0.863 0.863

Panel C: Market quality q (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post 0.036∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.030∗∗∗ 0.030∗∗∗ 0.030∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.007) (0.006) (0.012) (0.005) (0.011) (0.008) (0.008) (0.012) (0.004) (0.009)

N 920 920 920 920 920 683 683 683 683 683
adj. R2 0.539 0.539 0.539 0.538 0.538 0.589 0.589 0.589 0.588 0.588

Panel D: Market efficieny D1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗ -0.072∗∗∗ -0.072∗∗ -0.035∗∗ -0.035∗∗ -0.035∗∗ -0.035 -0.035
(0.021) (0.021) (0.031) (0.023) (0.032) (0.017) (0.017) (0.013) (0.023) (0.021)

N 573 573 573 573 573 374 374 374 374 374
adj. R2 0.663 0.663 0.663 0.662 0.662 0.792 0.792 0.792 0.791 0.791

Control ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL
Xchange (or-Pair) FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X X X X X
Xchange (or-Pair)×Month FE X X X X X
S.E. Correction
OLS X X
Robust X X
Cluster Xchange (or-Pair)×Ccy X X X X
Cluster Month X X X X
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Panel E: Liquidity λ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment Post -0.347∗∗∗ -0.347∗∗∗ -0.347∗∗ -0.347∗∗∗ -0.347∗∗ -0.170∗∗∗ -0.170∗∗∗ -0.170∗∗ -0.170∗∗∗ -0.170∗∗

(0.049) (0.050) (0.153) (0.033) (0.149) (0.049) (0.040) (0.080) (0.034) (0.066)

N 920 920 920 920 920 683 683 683 683 683
adj. R2 0.749 0.749 0.749 0.749 0.749 0.851 0.851 0.847 0.847 0.847

Panel F: Roll (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗ -0.006∗∗∗ -0.006∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗ -0.005∗∗∗ -0.005∗∗

(0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.001) (0.002)

N 920 920 920 920 920 683 683 683 683 683
adj. R2 0.525 0.525 0.525 0.525 0.525 0.612 0.612 0.602 0.602 0.602

Panel G: CHL (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗ -0.002∗∗∗ -0.002∗ -0.001 -0.001∗ -0.001 -0.001∗ -0.001
(0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

N 920 920 920 920 920 683 683 683 683 683
adj. R2 0.757 0.757 0.757 0.757 0.757 0.812 0.812 0.807 0.807 0.807

Panel H: log(Volume) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post 1.270∗∗∗ 1.270∗∗∗ 1.270∗ 1.270∗∗∗ 1.270∗ 0.722∗∗∗ 0.722∗∗∗ 0.722 0.722∗∗∗ 0.722∗

(0.196) (0.199) (0.687) (0.141) (0.675) (0.193) (0.157) (0.495) (0.104) (0.407)

N 992 992 992 992 992 750 750 750 750 750
adj. R2 0.705 0.705 0.705 0.705 0.705 0.813 0.813 0.808 0.808 0.808

Panel I: log(Amihud) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment×Post -1.597∗∗∗ -1.597∗∗∗ -1.597∗ -1.597∗∗∗ -1.597∗ -0.680∗∗∗ -0.680∗∗∗ -0.680∗ -0.680∗∗∗ -0.680∗∗

(0.244) (0.257) (0.853) (0.202) (0.841) (0.226) (0.194) (0.374) (0.159) (0.310)

N 920 920 920 920 920 683 683 683 683 683
adj. R2 0.742 0.742 0.741 0.741 0.741 0.854 0.854 0.850 0.850 0.850

Control ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL
Month FE X X X X X
Xchange (or-Pair)×Ccy FE X X X X X X X X X X
Xchange (or-Pair)×Month FE X X X X X
S.E. Correction
OLS X X
Robust X X
Cluster Xchange (or-Pair)×Ccy X X X X
Cluster Month X X X X
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Table C.8: BTC–USD vs. BTC–JPY

In this table, we report regression results from the projection of all market characteristics on the treatment

indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise; an event

indicator (Post) that takes the value one in the months following the introduction of bitcoin futures on

December 10, 2017; and their interaction (Treatment × Post) by using BTC–USD pairs as a treatment

group and BTC–JPY pairs as a control group. All metrics are computed at a monthly frequency in rolling

windows using three months of daily returns. The sample period is July 1, 2016 to December 31, 2018,

but we exclude the anticipation period between July 1, 2017 and December 31, 2017. Standard errors are

clustered at the exchange pair level for price synchronicity and price integration, and at the exchange×month

level for all other measures.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ρ κ q D1 λ Roll CHL Volume Amihud

Treatment×Post 0.029∗∗ 0.058∗∗ 0.031∗∗ -0.027 -0.365∗ -0.007∗∗ -0.003∗∗∗ 0.957 -1.163
(0.013) (0.026) (0.012) (0.028) (0.188) (0.003) (0.001) (0.765) (0.914)

N 3527 3527 517 517 517 517 517 539 517
adj. R2 0.461 0.681 0.637 0.708 0.713 0.572 0.765 0.684 0.696

Month FE X X X X X X X X X
Xchange (or-Pair)×Ccy FE X X X X X X X X X
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Table C.9: Results for Individual Liquidity Metrics

In this table, we report regression results from the projection of four monthly individual liquidity measures on

the treatment indicator (Treatment) that takes the value one for BTC–USD return pairs and zero otherwise;

an event indicator (Post) that takes the value one in the months following the introduction of bitcoin futures

on December 10, 2017; and their interaction (Treatment × Post). In Panel A (B, C, D), we consider the

Roll (1984) price impact measure (Abdi and Ranaldo (2017) CHL bid-ask spreads; log of trading volume;

log of Amihud (2002) price impact measure). All measures are computed at a monthly frequency in rolling

windows using three months of daily returns/volume. We indicate whether the control group contains all

bitcoin-fiat currency pairs (ALL), only BTC–EUR (EUR), all currency pairs except BTC–EUR (CCY ∗),

or the subset of exchanges that are not prone to trading volume manipulation (X-M). The sample period

is July 1, 2016 to December 31, 2018, but we exclude the anticipation period between July 1, 2017 and

December 31, 2017. Standard errors are clustered at the exchange×currency level.

Panel A: Roll (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment×Post -0.007∗∗∗ -0.007∗∗ -0.007∗∗∗ -0.006∗∗ -0.006∗∗ -0.005∗ -0.010∗∗∗ -0.004 -0.002
(0.003) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.080 0.212 0.275 0.149 0.525 0.602 0.601 0.489 0.643

Panel B: CHL (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment×Post -0.002∗ -0.002∗∗ -0.002∗ -0.002∗∗ -0.002∗∗ -0.001 -0.002∗∗ -0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.114 0.373 0.370 0.227 0.757 0.807 0.754 0.746 0.789

Panel C: log(Volume) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment×Post 1.261∗ 1.238∗ 1.264∗ 1.227∗ 1.270∗ 0.722 0.521 1.652∗∗ 1.941∗∗

(0.695) (0.694) (0.701) (0.696) (0.687) (0.495) (0.693) (0.770) (0.849)

N 992 992 992 992 992 750 605 794 438
adj. R2 0.058 0.453 0.056 0.253 0.705 0.808 0.666 0.699 0.803

Panel D: log(Amihud) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment×Post -1.702∗ -1.422 -1.732∗ -1.555∗ -1.597∗ -0.680∗ -1.010 -1.927∗∗ -2.059∗

(0.905) (0.861) (0.922) (0.890) (0.853) (0.374) (0.881) (0.907) (1.175)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.055 0.500 0.051 0.252 0.741 0.850 0.684 0.731 0.724

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange FE X
Month FE X X X X X
Ccy FE X
Xchange×Ccy FE X X X X X
Xchange×Month FE X
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Table C.10: 4:00 p.m. Settlement Prices – Alternative Characteristics

In this table, we report differences-in-differences regression results when we measure prices at the futures

settlement times on the corresponding cash markets. Thus, prices are sampled daily at 4:00 p.m. London

time from itBit, Kraken, and Bitstamp, and at 4:00 p.m. Eastern time from Gemini. We regress different

measures on the treatment indicator (Treatment) that takes the value one for BTC–USD return pairs and

zero otherwise; an event indicator (Post) that takes the value one following the introduction of bitcoin

futures on December 10, 2017; and their interaction (Treatment × Post). In Panel A (B, C), we consider

the Roll (1984) price impact measure (Abdi and Ranaldo (2017) CHL bid-ask spreads; log of trading volume;

log of Amihud (2002) price impact measure). All measures are computed at a monthly frequency in rolling

windows using three months of daily returns/volume. In each panel, we present the results using end-of-

day prices, and 4:00 p.m. settlement prices. We present only the coefficient estimates for the interaction

term Treatment × Post. In Panel A and B, we present results for the comparison between BTC–USD

and BTC–CCY. The sample period is July 1, 2016 to December 31, 2018, but we exclude the anticipation

period between July 1, 2017 and December 31, 2017. We use heteroskedasticity robust errors to estimate

the standard errors.

(1) (2) (3) (4) (5) (6)
Panel A: Roll, BTC–USD vs. BTC–CCY

End-of-day prices Settlement prices
Treatment×Post 0.001 0.002 0.002 -0.013∗∗ -0.011∗∗ -0.005

(0.003) (0.002) (0.002) (0.006) (0.004) (0.004)

N 232 232 210 232 232 210
adj. R2 0.164 0.674 0.627 0.068 0.404 0.372

Panel B: CHL, BTC–USD vs. BTC–CCY

End-of-day prices Settlement prices
Treatment×Post -0.002 -0.001 -0.001 -0.004∗ -0.003∗∗ -0.002

(0.002) (0.001) (0.001) (0.002) (0.001) (0.001)

N 232 232 210 232 232 210
adj. R2 0.191 0.727 0.680 0.189 0.651 0.577

Panel C: log(Amihud), BTC–USD vs. BTC–CCY

End-of-day prices Settlement prices
Treatment×Post -1.441∗∗ -1.562∗∗∗ -1.187∗∗ -1.706∗∗∗ -1.815∗∗∗ -1.535∗∗∗

(0.604) (0.338) (0.456) (0.607) (0.332) (0.443)

N 232 232 210 232 232 210
adj. R2 0.383 0.826 0.859 0.399 0.837 0.865

Control ALL ALL ALL ALL ALL ALL
Month FE X X
Xchange×Ccy FE X X X X
Xchange×Month FE X X
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Table C.11: Liquidity Channel – Alternative Definitions of High Liquidity

In this table, we estimate Equation (12) from the manuscript to identify the effect of liquidity on daily pair-

wise cross-exchange Pearson correlation coefficients (Kapadia and Pu (2012) price synchronicity measures)

in Panel A (Panel B) after the introduction of bitcoin futures by using the same data as in Table 5 with

various liquidity measures. High Liquidity is equal to 1 if the average liquidity measures of both exchanges

in the pre-event period are above the sample median and 0 otherwise. For liquidity measures, we use Roll

in columns (1) and (5), CHL in columns (2) and (6), trading volume in columns (3) and (7), and Amihud

in columns (4) and (8). Daily pairwise Pearson correlation coefficients and Kapadia and Pu (2012) price

synchronicity measures are computed in rolling windows with lags of three months. We only report results

using all bitcoin-fiat currency pairs. We report coefficient estimates for Treatment×Post×High Liquidity in

each panel. The sample period is July 1, 2016 to December 31, 2018, but we exclude the anticipation period

between July 1, 2017 and December 31, 2017. Standard errors are clustered at the exchange pair level.

Panel A: Synchronicity ρ (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 0.126∗∗∗ 0.105∗∗∗ 0.160∗∗∗ 0.125∗∗∗ 0.058∗∗∗ 0.051∗∗∗ 0.063∗∗∗ 0.053∗∗∗

(0.018) (0.018) (0.024) (0.019) (0.013) (0.015) (0.012) (0.010)

Treatment×Post×High Liquidity -0.062 -0.040 -0.168∗∗∗ -0.118∗∗∗ -0.036∗∗ -0.007 -0.043∗∗ -0.050∗∗∗

(0.042) (0.031) (0.031) (0.021) (0.014) (0.018) (0.017) (0.011)

N 4310 4310 4310 4310 1586 1586 1586 1586
adj. R2 0.458 0.452 0.451 0.441 0.816 0.814 0.814 0.815

Panel B: Integration κ (1) (2) (3) (4) (5) (6) (7) (8)

Treatment×Post 0.134∗∗∗ 0.123∗∗∗ 0.153∗∗∗ 0.135∗∗∗ 0.051∗∗∗ 0.048∗∗∗ 0.051∗∗∗ 0.049∗∗∗

(0.017) (0.018) (0.021) (0.018) (0.011) (0.013) (0.011) (0.009)

Treatment×Post×High Liquidity -0.048 -0.060∗∗ -0.138∗∗∗ -0.119∗∗∗ -0.006 -0.003 -0.009 -0.026∗

(0.038) (0.030) (0.030) (0.038) (0.015) (0.016) (0.017) (0.014)

N 4310 4310 4310 4310 1586 1586 1586 1586
adj. R2 0.679 0.668 0.670 0.664 0.867 0.863 0.868 0.863

Liquidity measure Roll CHL Volume Amihud Roll CHL Volume Amihud
Control ALL ALL ALL ALL ALL ALL ALL ALL
Xchange-Pair FE X X X X
Month FE X X X X
Ccy FE X X X X X X X X
Xchange-Pair×Month FE X X X X
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Table C.12: Volatility and Arbitrage Index

In Panel A (Panel B) of this table, we report regression results from the projection of monthly volatility

(arbitrage price index) on the treatment indicator (Treatment) that takes the value one for BTC–USD return

pairs and zero otherwise; an event indicator (Post) that takes the value one in the months following the

introduction of bitcoin futures on December 10, 2017; and their interaction (Treatment× Post). Volatility

is annualized and measured using the standard deviation of daily log returns. The arbitrage price index

is measured as the absolute price deviation (in units of USD $1,000) between each pair of exchanges. All

measures are computed at a monthly frequency in rolling windows using three months of daily returns (prices

for the arbitrage index). We indicate whether the control group contains all bitcoin-fiat currency pairs (ALL),

only BTC–EUR (EUR), all currency pairs except BTC–EUR (CCY ∗), or the subset of exchanges that are

not prone to trading volume manipulation (X-M). The sample period is July 1, 2016 to December 31, 2018,

but we exclude the anticipation period between July 1, 2017 and December 31, 2017. Standard errors are

clustered at the exchange×currency level for volatility and at the exchange pair level for the arbitrage index.

Panel A: Volatility σ (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.002 -0.003 0.002
(0.021) (0.018) (0.018)

Post 0.140∗∗∗ 0.131∗∗∗ 0.137∗∗∗

(0.012) (0.011) (0.013)

Treatment×Post -0.044∗∗ -0.039∗∗ -0.043∗∗ -0.041∗∗ -0.039∗∗ -0.026∗ -0.056∗∗∗ -0.030 -0.023
(0.017) (0.019) (0.018) (0.019) (0.017) (0.015) (0.019) (0.019) (0.024)

N 920 920 920 920 920 683 573 733 430
adj. R2 0.094 0.172 0.735 0.172 0.827 0.839 0.888 0.817 0.896

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X
Xchange×Month FE X

Panel B: Arbitrage index (1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment -0.275∗∗∗ 0.359∗∗∗ -0.275∗∗∗

(0.066) (0.130) (0.066)

Post 1.409∗∗∗ 1.492∗∗∗ 1.484∗∗∗

(0.298) (0.313) (0.310)

Treatment×Post -1.164∗∗∗ -1.257∗∗∗ -1.164∗∗∗ -1.239∗∗∗ -1.257∗∗∗ -0.325 -0.030 -3.395∗∗∗ -0.586
(0.297) (0.314) (0.297) (0.309) (0.313) (0.202) (0.051) (0.635) (0.566)

N 4310 4310 4310 4310 4310 1586 3906 3606 1056
adj. R2 0.178 0.446 0.184 0.462 0.568 0.556 0.359 0.684 0.617

Control ALL ALL ALL ALL ALL ALL EUR CCY∗ X-M
Xchange-Pair FE X X X X X
Month FE X X X X X
Ccy FE X X X X X X
Xchange-Pair×Month FE X
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Table C.13: Evidence from Introduction of Ethereum Futures

In Panel A (Panel B) of this table, we report regression results from the projection of monthly pairwise

cross-exchange Pearson correlation coefficients (Kapadia and Pu (2012) price synchronicity measures) on the

treatment indicator (Treatment) that takes the value one for ETH–USD return pairs and zero otherwise;

an event indicator (Post) that takes the value one in the three months (February, March, April) following

the introduction of ethereum futures on February 8, 2021 and zero in three months before (September,

October, November) the announcement of ethereum futures on December 15, 2020; and their interaction

(Treatment×Post). Pearson correlation coefficients and the integration measures are computed at a monthly

frequency in rolling windows using one month of daily returns. We indicate that the control group contains

all ethereum-fiat currency pairs (ALL). The sample period is September 1, 2020 to April 30, 2021, but we

exclude the period between the anncouncement and the launch of the ethereum futures contract between

December 15, 2020 and February 8, 2021. Standard errors are clustered at the exchange pair level.

Panel A: Synchronicity (ρ) (1) (2) (3) (4) (5) (6)

Treatment -0.044∗∗∗ -0.004 -0.044∗∗∗

(0.009) (0.005) (0.009)

Post 0.004 0.003 0.003
(0.002) (0.002) (0.002)

Treatment×Post 0.055∗∗∗ 0.019∗∗∗ 0.055∗∗∗ 0.055∗∗∗ 0.019∗∗∗ 0.016∗∗

(0.008) (0.004) (0.008) (0.008) (0.004) (0.006)

N 3172 3172 3172 3172 3172 1491
adj. R2 0.059 0.678 0.073 0.065 0.700 0.233

Panel B: Integration (κ) (1) (2) (3) (4) (5) (6)

Treatment -0.012 0.057∗∗∗ -0.011
(0.015) (0.008) (0.015)

Post 0.021∗∗∗ 0.018∗∗∗ 0.021∗∗∗

(0.005) (0.005) (0.005)

Treatment×Post 0.086∗∗∗ 0.031∗∗∗ 0.086∗∗∗ 0.086∗∗∗ 0.031∗∗∗ 0.026∗∗∗

(0.014) (0.008) (0.014) (0.014) (0.007) (0.010)

N 3172 3172 3172 3172 3172 1491
adj. R2 0.064 0.630 0.098 0.070 0.673 0.302

Control ALL ALL ALL ALL ALL ALL
Xchange-Pair FE X X
Month FE X X
Ccy FE X X X
Xchange-Pair×Month FE X
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D Additional Figures
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Figure D.1: Whale wallets

In Figures D.1.a and D.1.b, we plot ratios of “whale wallets”. A whale wallet is defined as
a wallet that holds more than 1,000 bitcoins. In Figure D.1.a, we report the ratio of whale
wallets to the total number of existing wallets. In Figure D.1.b, we plot the ratio of whale
walltets to the number of wallets that hold more than 1 bitcoin. All values are expressed in
percentage terms. The sample period is July 1, 2016 to December 31, 2018. In both figures,
the first dashed vertical line represents the CME’s first announcement of the bitcoin futures
launch on October 31, 2017. The second dashed line represents the introduction of the first
bitcoin futures contract by the CBOE on December 10, 2017.

(a)

(b)
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